Модель (от лат. modulus — мера) и моделирование являются общенаучными понятиями. Моделирование с общенаучной точки зрения выступает как способ познания с помощью построения особых объектов, систем – моделей исследуемых объектов, явлений или процессов. При этом тот или иной объект называют моделью тогда, когда он используется для получения информации относительно другого объекта – прототипа модели.
Метод моделирования используется фактически во всех без исключения науках и на всех этапах научного исследования. Эвристическая сила этого метода определяется тем, что с помощью метода моделирования удается свести изучение сложного к простому, невидимого и неощутимого и видимому и ощутимому и т.д.
При исследовании какого-то объекта (процесса или явления) с помощью метода моделирования, в качестве модели можно выбрать те свойства, которые нас в данный момент интересуют. Научное исследование любого объекта всегда относительно. В конкретном исследовании нельзя рассмотреть объект во всем его многообразии. Следовательно, один и тот же объект может иметь много различных моделей и ни про одну из них нельзя сказать, что она единственная, настоящая модель данного объекта.
Принято различать четыре основных свойствамоделей:
· упрощенность по сравнению с изучаемым объектом;
· способность отражать или воспроизводить объект исследования;
· возможность замещать объект исследования на определенных этапах его познания;
· возможность получать новую информацию об изучаемом объекте.
Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Таким формализованным описанием может быть система линейных, нелинейных или дифференциальных уравнений, система неравенств, определенный интеграл, многочлен с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.
Прежде чем создать математическую модель объекта (процесса или явления) его длительно изучают различными методами: наблюдением, специально организованными экспериментами, теоретическим анализом и т.д., то есть достаточно хорошо изучают качественную сторону явления, выявляют отношения, в которых находятся элементы объекта. Затем объект упрощается, из всего многообразия присущих ему свойств выделяются наиболее существенные. При необходимости делаются предположения об имеющихся связях с окружающим миром.
Как указывалось ранее, любая модель не тождественна самому явлению, она только дает некоторое приближение к действительности. Но в модели перечислены все предположения, которые положены в ее основу. Эти предположения могут быть грубыми и тем не менее давать вполне удовлетворительное приближение к реальности. Для одного и того же явления может быть построено несколько моделей, в том числе и математических. Например, описать движение планет Солнечной системы можно с помощью:
8 модели Кеплера, которая состоит из трех законов, включая математические формулы (уравнение эллипса);
8 модели Ньютона, которая состоит из одной формулы, но тем не менее она более общая и точная.
В оптике рассматривалось несколько моделей света: корпускулярная, волновая и электромагнитная. Для них были выведены многочисленные закономерности количественного характера. Каждая из этих моделей требовала своего математического подхода и соответствующих математических средств. Корпускулярная оптика пользовалась средствами евклидовой геометрии и пришла к выводу законов отражения и преломления света. Волновая модель теории света потребовала новых математических идей и чисто вычислительным путем были открыты новые факты, относящиеся к явлениям дифракции и интерференции света, которые ранее не наблюдались. Геометрическая оптика, связанная с корпускулярной моделью, здесь оказалась бессильной.
Построенная модель должна быть такой, чтобы она могла замещать в исследованиях объект (процесс или явление), должна иметь с ним сходные черты. Сходство достигается либо за счет подобия структуры (изоморфизм), либо аналогии в поведении или функционировании (изофункциональность). Опираясь на сходство структуры или функции модели и оригинала в современной технике проверяют, рассчитывают и проектируют сложнейшие системы, машины и сооружения.
Как указывалось выше, для одного и того же объекта, процесса или явления может быть построено много различных моделей. Некоторые из них (не обязательно все) могут оказаться изоморфными. Например, в аналитической геометрии кривая на плоскости используется в качестве модели соответствующего уравнения с двумя переменными. В этом случае модель (кривая) и прототип (уравнение) являются изоморфнымти системами (точек, лежащих на кривой, и соответствующих пар чисел, удовлетворяющих уравнению),
В книге «Математика ставит эксперимент» академик Н.Н.Моисеев пишет, что любая математическая модель может возникнуть тремя путями:
· В результате прямого изучения и осмысления объекта (процесса или явления) (феноменологическая) (пример – уравнения, описывающие динамику атмосферы, океана),
· В результате некоторого процесса дедукции, когда новая модель получается как частный случай более общей модели (асимптоматическая) (пример – уравнения гидро-термодинамики атмосферы),
· В результате некоторого процесса индукции, когда новая модель является естественным обобщением «элементарных» моделей (модель ансамблей или обобщенная модель).
Процесс разработки математических моделей состоит из следующих этапов:
· формулирование проблемы;
· определение цели моделирования;
· организация и проведение исследования предметной области (исследование свойств объекта моделирования);
· разработка модели;
· проверка ее точности и соответствия реальности;
· практическое использование, т.е. перенос полученных с помощью модели знаний на исследуемый объект или процесс.
Особое значение моделирование как способ познания законов и явлений природы приобретает в изучении объектов, недоступных в полной мере прямому наблюдению или экспериментированию. К ним относятся и социальные системы, единственно возможным способом изучения которых, зачастую служит моделирование.
Общих способов построения математических моделей не существует. В каждом конкретном случае нужно исходить из имеющихся данных, целевой направленности, учитывать задачи исследования, а также соразмерять точность и подробность модели. Она должна отражать важнейшие черты явления, существенные факторы, от которых в основном зависит успех моделирования.
При разработке моделей необходимо придерживаться следующих основных методологических принципов моделирования социальных явлений:
· принципа проблемности, предполагающего движение не от готовых "универсальных" математических моделей к проблемам, а от реальных, актуальных проблем — к поиску, разработке специальных моделей;
· принципа системности, рассматривающего все взаимосвязи моделируемого явления в терминах элементов системы и ее среды;
· принципа вариативности при формализации процессов управления, связанного со специфическими различиями законов развития природы и общества. Для его объяснения необходимо раскрыть коренное отличие моделей общественных процессов от моделей, описывающих явления природы.