Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Вероятность произведения событий



 

Мы уже знаем, что вероятность – это численная мера возможности наступления случайного события, т.е. события, которое может произойти, а может и не произойти при осуществлении определенной совокупности условий. При изменении совокупности условий вероятность случайного события может измениться. В качестве дополнительного условия мы можем рассмотреть наступление другого события. Итак, если к комплексу условий, при котором происходит случайное событие А, добавить еще одно, состоящее в наступлении случайного события В, то вероятность наступления события А будет называться условной.

Условная вероятность события А — вероятность появления события А при ус­ловии, что произошло событие В. Условная вероятностьобозначается (A).

Пример 16. В ящике имеются 7 белых и 5 черных шаров, отличаю­щихся лишь цветом. Опыт состоит в том, что случайным образом вынимают один шар и, не опуская его обратно, вынимают еще один шар. Какова вероятность, что, второй вынутый шар – черный, если при первом извлечении достали белый шар?

Решение.

Перед нами два случайных события: событие А – первый вынутый шар оказался белым, В – второй вынутый шар - черный. А и В несовместные события, воспользуемся классическим определением вероятности. Число элементарных исходов при извлечении первого шара – 12, а число благоприятных исходов достать белый шар – 7. Следовательно, вероятность P(А) = 7/12.

Если первый шар оказался белым, то условная вероятность события В — появления второго черного шара (при условии, что первый шар был белым) — равна (В) = 5/11, так как перед выни­манием второго шара осталось 11 шаров, из которых 5 черных.

Отметим, что вероятность появления черного шара при втором извлечении не зависела бы от цвета вынутого первого шара, если, вы­нув первый шар, мы положили бы его обратно в ящик.

Рассмотрим два случайных события А и В. Пусть вероятности P(А) и (В) известны. Определим, чему равна вероятность появления и события А, и события В, т.е. произведения этих событий.

Теорема умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при том условии, что первое событие произошло:

Р(А× В) = Р(А)× (В) .

Так как для вычисления вероятности произведения не играет роли какое из рассмотренных событий А и В было первым, а какое вторым, то можно записать:

Р(А× В) = Р(А) × (В) = Р(В) × (А).

Теорему можно распространить на произведение п событий:

Р(А1 А2 . Ап) = Р(Ах) Р(А21) .. Р(Ап1 А2 ... Ап-1).

Пример 17.Для условий предыдущего примера вычислить вероятность извлечения двух шаров: а) белого шара первым, а черного вторым; б) двух черных шаров.

Решение.

а)Из предыдущего примера мы знаем вероятности достать из ящика белый шар первым и черный шар вторым, при условии, что первым извлекли белый шар. Для подсчета вероятности появления обоих событий вместе воспользуемся теоремой умножения вероятностей: Р(А× В) = Р(А) × (В)= .

б) Аналогично рассчитаем вероятность вынуть два черных шара. Вероятность достать первым черный шар . Вероятность достать черный шар во второй раз при условии, что первый вынутый черный шар мы не опускаем обратно в ящик (черных шаров осталось 4, а всего шаров стало 11). Результирующую вероятность можно подсчитать по формуле Р(А×В)= Р(А) × (В) 0,152.

Теорема умножения вероятностей имеет более простой вид, если события А и В независимые.

Событие В называют независимым от события А, если вероят­ность события В не изменяется от того, произошло событие А или нет. Если событие В является независимым от события А, то его условная (В) равна обычной вероятности P(В):

(В)= P(В).

Оказывается, что если событие В будет независимым от события А, то и событие А будет независимым от В, т.е. (А)= P(А).

Докажем это. Подставим равенство из определения независимости события В от события А в теорему умножения вероятностей: Р(А×В) = Р(А)× (В)= Р(А)× (В). Но с другой стороны Р(А× В) = Р(В) × (А). Значит Р(А) × (В)= Р(В) × (А) и (А)= P(А).

Таким образом, свойство независимость (или зависимость) событий всегда взаимно и можно дать следующее определение: два события называются независимыми, если появление одного из них не изменяет вероятность появления другого.

Следует отметить, что в основе независимости событий лежит независимость физической природы их происхождения. Это означает, что наборы случайных факторов, приводящих к тому или иному исходу испытания одного и другого случайного события, различны. Так, например, поражение цели одним стрелком никак не влияет (если, конечно, не придумывать никаких экзотических причин) на вероятность попадания в цель вторым стрелком. На практике независимые события встречаются очень часто, так как причинная связь явлений во многих случаях отсутствует или несущест­венна.

Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению вероятности этих событий: Р(А×В) = Р(А) × P(В).

Из теоремы умножения вероятностей для независимых событий вытекает следующее следствие.

Если события А и В несовместные и P(A)¹0, P(В)¹0, то они зависимы.

Докажем это способом от противного. Предположим, что несовместные события А и В независимы. Тогда Р(А×В) = Р(А) ×P(В). И так как P(A)¹0, P(В)¹0, т.е. события А и В не являются невозможными, то Р(А×В)¹0. Но, с другой стороны, событие АžВ является невозможным как произведение несовместных событий (это рассматривалось выше). Значит Р(А×В)=0. получили противоречие. Таким образом, наше исходное предположение неверно. События А и В – зависимые.

Пример 18. Вернемся теперь к нерешенной задаче о двух стрелках, стреляющих по одной цели. Напомним, что при ве­роятности попадания в цель первым стрелком – 0,8, а вторым 0,7 необходимо найти вероятность поражения цели.

События А и В – попадание в цель соответственно первым и вторым стрелком – совместные, поэтому для нахождения вероятности суммы событий А + В – поражение цели хотя бы одним стрелком – необходимо воспользоваться формулой: Р(А+В)=Р(А)+ Р(В)Р(АžВ). События А и В независимые, поэтому Р(А× В) = Р(А) × P(В).

Итак, Р(А+В) = Р(А) + Р(В) - Р(А) × P(В).

Р(А+В)= 0,8 + 0,7 – 0,8×0,7 = 0,94.

Пример 19.

Производится два независимых выстрела в одну и ту же мишень. Вероятность попадания при первом выстреле 0,6, а при втором — 0,8. Найти вероятность попадания в мишень при двух выстрелах.

Решение.

1) Обозначим попадание при первом выстреле как событие
А1 , при втором — как событие А2.

Попадание в мишень предполагает хотя бы одно попада­ние: или только при первом выстреле, или только при втором, или и при первом, и при втором. Следовательно, в задаче требу­ется определить вероятность суммы двух совместных событий А1 и А2:

Р(А1+ А2) = Р(А1) + Р(А2)-Р(А1 • А2).

2) Так как события независимы, то Р(А1• А2) = Р(А1) • Р(А2).

3) Получаем: Р(А1+ А2) = 0,6 + 0,8 - 0,6 • 0,8 = 0,92.
Если события несовместны, то Р(А • В) = 0 и Р(А + В) = = Р(А) + Р(В).

Пример 20.

В урне находятся 2 белых, 3 красных и 5 синих одинаковых по размеру шаров. Какова вероятность, что шар, случайным образом извлеченный из урны, будет цветным (не белым)?

Решение.

1) Пусть событие А — извлечение красного шара из урны,
событие В — извлечение синего шара. Тогда событие (А + В)
есть извлечение цветного шара из урны.

2) Р(А) = 3/10, Р(В) = 5/10.

3) События А и В несовместны, так как извлекается только
один шар. Тогда: Р(А + В) = Р(А) + Р(В) = 0,3 + 0,5 = 0,8.

Пример 21.

В урне находятся 7 белых и 3 черных шара. Какова вероят­ность: 1) извлечения из урны белого шара (событие А); 2) из­влечения из урны белого шара после удаления из нее одного шара, который является белым (событие В); 3) извлечения из урны белого шара после удаления из нее одного шара, который является черным (событие С)?

Решение.

1) Р(А) = = 0,7 (см. классическую вероятность).

2)РВ(А) = = 0,(6).

3) РС(А) = | = 0,(7).

Пример 22.

Механизм собирается из трех одинаковых деталей и счита­ется неработоспособным, если все три детали вышли из строя. В сборочном цехе осталось 15 деталей, из которых 5 нестандарт­ных (бракованных). Какова вероятность того, что собранный из взятых наугад оставшихся деталей механизм будет неработос­пособным?

Решение.

1) Обозначим искомое событие через А, выбор первой не­стандартной детали через А1, второй— через А2, третьей — через А3

2) Событие А произойдет, если произойдет и событие А1 и событие А2, и событие А3 т. е.

А = А1 А2 А3,

так как логическое «и» соответствует произведению (см. раз­дел «Алгебра высказываний. Логические операции»).

3) События А1, А2, А3 зависимы, поэтому Р(А1 А2 А3) =
= Р(А1) Р(А21) Р(А31 А2).

4)Р(А1) = ,Р(А21) = ,Р(А31 А2)= . Тогда

Р(А1 А2 А3) = 0,022.

Для независимых событий: Р(А В) = Р(А) Р(В).

Исходя из вышеуказанного, критерий независимости двух событий А и В:

Р(А) = РВ(А) = Р (А), Р(В) = РА(В) =Р (В).

 

 

Пример 23.

Вероятность поражения цели первым стрелком (событие А) равна 0,9, а вероятность поражения цели вторым стрелком (событие В) равна 0,8. Какова вероятность того, что цель будет поражена хотя бы одним стрелком?

Решение.

1) Пусть С - интересующее нас событие; противоположное событие — состоит в том, что оба стрелка промахнулись.

2) = .

3) Так как при стрельбе один стрелок не мешает другому, то события и независимы.

Имеем: Р( ) = Р( ) Р( ) =[1 - Р(А)] [1 - Р(В)] =(1 - 0,9) • (1 - 0,8) =

= 0,1 • 0,2 = 0,02.

4) Р(С) = 1 -Р( ) = 1 -0,02 = 0,98.

Формула полной вероятности

Пусть событие А может произойти в результате проявления одного и только одного события Нi (i = 1,2,... n) из некоторой полной группы несовместных событий H1, H2,… Hn. События этой группы обычно называют гипотезами.

Формула полной вероятности. Вероятность события А рав­на сумме парных произведений вероятностей всех гипотез, об­разующих полную группу, на соответствующие условные ве­роятности данного события А:

Р(А) = , где = 1.

 

Пример 24.

Имеется 3 одинаковые урны. В первой — 2 белых и 1 чер­ный шар, во второй — 3 белых и 1 черный шар, в третьей урне — 2 белых и 2 черных шара. Из выбранной наугад урны выбира­ется 1 шар. Какова вероятность того, что он окажется белым?

Решение.

1) Гипотезой Нi будем считать выбор i-й урны.

Все урны считаются одинаковыми, следовательно, вероят­ность выбрать i-ю урну есть

Р(Hi) = 1/3, где i = 1, 2, 3.

2) Вероятность вынуть белый шар из первой урны: (А) = .

Вероятность вынуть белый шар из второй урны: (А) = .

Вероятность вынуть белый шар из третьей урны: (А) = .

 

3) Искомая вероятность:

Р(А) = =0.63(8)

Пример 25.

В магазин для продажи поступает продукция трех фабрик, относительные доли которых: I — 50%, II — 30%, III — 20%. Для продукции фабрик брак соответственно составляет: I — 2%, П — 2%, III — 5%. Какова вероятность того, что изделие этой продукции, случайно приобретенное в магазине, окажется доб­рокачественным (событие А)?

Решение.

1) Здесь возможны следующие три гипотезы: H1, H2, H3
приобретенная вещь выработана соответственно на I, II, III фабриках; система этих гипотез полная.

Вероятности: P(H1) = 0,5; Р(Н2) = 0,3; Р(Н3) = 0,2.

2) Соответствующие условные вероятности события А рав­ны: (A) = 1-0,02 = 0,98; (A) = 1-0,03 = 0,97; (А) = = 1-0,05 = 0,95.

3) По формуле полной вероятности имеем: Р(А) = 0,5 • 0,98 + + 0,3• 0,97 + 0,2 • 0,95 = 0,971.

Формула апостериорной вероятности (формула Бейеса)

Рассмотрим ситуацию.

Имеется полная группа несовместных гипотез H1, H2, …Hn, вероятности которых (i = 1, 2, ... п) известны до опыта (вероят­ности априори). Производится опыт (испытание), в результате которого зарегистрировано появление события А, причем изве­стно, что этому событию наши гипотезы приписывали опреде­ленные вероятности (i=1, 2, ...п). Каковы будут вероятности этих гипотез после опыта (вероятности апостериори)?

Ответ на подобный вопрос дает формула апостериорной вероятности (формула Бейеса):

, где i=1,2, ...п.

Пример 26.

Вероятность поражения самолета при одиночном выстреле для 1-го ракетного комплекса (событие А) равна 0,2, а для 2-го (событие В) — 0,1. Каждый из комплексов производит по одно­му выстрелу, причем зарегистрировано одно попадание в само­лет (событие С). Какова вероятность, что удачный выстрел при­надлежит первому ракетному комплексу?

Решение.

1) До опыта возможны четыре гипотезы:

H1 = А В — самолет поражен 1 -м комплексом и самолет поражен 2-м комплексом (произведение соответствует логичес­кому «и»),

H2 = А В — самолет поражен 1 -м комплексом и само­лет не поражен 2-м комплексом,

H3 = А В — самолет не поражен 1 -м комплексом и са­молет поражен 2-м комплексом,

H4 = А В — самолет не поражен 1 -м комплексом и са­молет не поражен 2-м комплексом.

Эти гипотезы образуют полную группу событий.

2) Соответствующие вероятности (при независимом действии комплексов):

Р(H1) = 0,2 0,1 = 0,02;

Р(H2) = 0,2 (1-0,1) = 0,18;

Р(Н3) = (1-0,2) 0,1 = 0,08;

Р(H4) = (1-0,2) (1-0,1) = 0,72.

3) Так как гипотезы образуют полную группу событий, то должно выполняться равенство = 1.

Проверяем: Р(H1) + Р(Н2) + Р(H3) + Р(H4 ) = 0,02 + 0,18 + + 0,08 + 0,72 = 1, таким образом, рассматриваемая группа гипо­тез верна.

4) Условные вероятности для наблюдаемого события С при данных гипотезах будут: (С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H1, предполагает два попадания:

(С) = 1; (С) = 1.

(С) = 0, так как по условию задачи зарегистрировано одно попадание, а гипотеза H4 предполагает отсутствие попаданий. Следовательно, гипотезы H1, и H4 отпадают.

5)Вероятности гипотез H2 и H3 вычисляем по формуле Бейеса:

0,7, 0,3.

Таким образом, с вероятностью приблизительно 70% (0,7) можно утверждать, что удачный выстрел принадлежит первому ракетному комплексу.

5.4. Случайные величины. Закон распределения дискретной случайной величины

Достаточно часто на практике рассматриваются такие испытания, в результате реализации которых случайным образом получается некоторое число. Например, при бросании игрального кубика выпадает число очков от 1 до 6, при взятии 6 карт из колоды можно получить от 0 до 4 тузов. За определенный промежуток времени (скажем, день или месяц) в городе регистрируется то или иное количество преступлений, происходит какое-то количество дорожно-транспортных происшествий. Из орудия производится выстрел. Дальность полета снаряда также принимает какое-либо значение случайным образом.

Во всех перечисленных испытаниях мы сталкиваемся с так называемыми случайными величинами.

Числовая величина, принимающая то или иное значение в результате реализации испытания случайным образом, называется случайной величиной.

Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей изучала главным образом случайные события, то современная теория вероятностей преимущественно имеет дело со случайными величинами.

Далее будем обозначать случайные величины прописными латинскими буквами X, Y, Z и т.д., а их возможные значения – соответствующими строчными x, y, z. Например, если случайная величина имеет три возможных значения, то будем обозначать их так: , , .

Итак, примерами случайных величин могут быть:

1) количество очков, выпавших на верхней грани игрального кубика:

2) число тузов, при взятии из колоды 6 карт;

3) количество зарегистрированных преступлений за день или месяц;

4) число попаданий в мишень при четырех выстрелов из пистолета;

5) расстояние, которое пролетит снаряд при выстреле из орудия;

6) рост случайно взятого человека.

Можно заметить, что в первом примере случайная величина может принять одно из шести возможных значений: 1, 2, 3, 4, 5 и 6. Во втором и четвертом примерах число возможных значений случайной величины пять: 0, 1, 2, 3, 4. В третьем примере значением случайной величины может быть любое (теоретически) натуральное число или 0. В пятом и шестом примерах случайная величина может принимать любое действительное значение из определенного промежутка (а, b).

Если случайная величина может принимать конечное или счетное множество значений, то она называется дискретной (дискретно распределенной).

Непрерывной случайной величиной называется такая случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Для задания случайной величины недостаточно перечислить ее всевозможные значения. Например, во втором и в третьем примерах случайные величины могли принимать одни и те же значения: 0, 1, 2, 3 и 4. Однако вероятности, с которыми эти случайные величины принимают свои значения, будут совершенно разными. Поэтому для задания дискретной случайной величины кроме перечня ее всех возможных значений нужно еще указать их вероятности.

Соответствие между возможными значениями случайной величины и их вероятностями называютзаконом распределения дискретной случайной величины.

Закон распределения можно задать в виде таблицы, формулы или графически.

При табличном задании закона распределения в первой строке таблицы записываются возможные значения случайной величины, а во второй – соответствующие значениям вероятности:

X
p

Такая таблица называется рядом распределения дискретной случайной величины X.

Так как случайная величина в результате испытания примет одно и только одно значение, то события: Х= , Х= , …, Х= образуют полную группу. Следовательно, из следствия 1 теоремы сложения вероятностей сумма вероятностей этих событий равна единице:

+ +…+ = =1.

Для наглядности ряд распределения случайной величины можно изобразить графически. Для этого в прямоугольной системе координат по оси абсцисс ОХ будем откладывать значения случайной величины , k=1, 2, …, n, а по оси ординат OY – соответствующие им вероятности . Полученные точки соединяются отрезками прямых. Построенная таким образом фигура называется многоугольником распределения (рис.5.1).

Рис. 5.1

Многоугольник распределения, также как и ряд распределения, полностью характеризует случайную величину. Он является одним из форм закона распределения.

Пример 27. Случайным образом бросается монета. Построить ряд и многоугольник распределения числа выпавших гербов.

Случайная величина, равная количеству выпавших гербов, может принимать два значения: 0 и 1. Значение 1 соответствует событию - выпадение герба, значение 0 – выпадению решки. Вероятности выпадения герба и выпадения решки одинаковы и равны . Т.е. вероятности, с которыми случайная величина принимает значения 0 и 1, равны . Ряд распределения имеет вид:

 

X
p

Многоугольник распределения изображен на рис.5.2.

Рис. 5.2

Пример 28.Построить ряд распределения числа очков, выпавших при броске кубика.

Случайная величина Х принимает следующие значения: Х=1, 2, 3, 4, 5, 6, соответствующие выпадениям «единицы», «двойки», «тройки», «четверки», «пятерки», «шестерки» на верхней грани кубика. Так как все эти события равновозможны, то соответствующие значениям случайной величины вероятности равны . Значит, ряд распределения запишется в таком виде:

X
P

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.