Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Собственные значения и собственные векторы матрицы



 

Будем рассматривать квадратные матрицы размером п х п, или, что то же самое, матрицы порядка п.

При умножении матрицы порядка п на n-мерный вектор в произведении получается n-мерный вектор:

 

 

Для любой матрицы может существовать набор особых векторов, таких, что произведение матрицы на вектор из та­кого набора равносильно умножению этого вектора на опреде­ленное вещественное число (вообще говоря разное для каждого вектора).

Определение 4. Число λ называется собственным значени­ем матрицы А порядка п, если существует такой ненулевой вектор Rn, что выполняется равенство

 

 

При этом вектор называется собственным вектором матрицы А, а λ — собственным значением матрицы А, соответствую­щим вектору .

Иными словами, умножение матрицы на ее собственный вектор равносильно удлинению этого вектора в |λ| раз, если |λ| > 1 (или сжатию при |λ| < 1). Если λ = 1, умножение мат­рицы на соответствующий собственный вектор не меняет его. Уравнение (13.5) представлено в матричной форме. Группируя все слагаемые этого уравнения в левой части, перепишем его в более удобном виде:

 

 

где Е и — соответственно единичная матрица и нулевой век­тор.

Если aij элементы матрицы А, то характеристическая матрица А — λЕ, согласно определениям умножения матрицы на число и суммы матриц, имеет вид

 

 

Проблема отыскания собственных значений и собственных векторов матриц составляет основу специального раздела ал­гебры; в дальнейшем мы еще вернемся к этому вопросу. Здесь лишь отметим один важный результат алгебры матриц: для симметрических матриц (13.2) все п собственных значений яв­ляются действительными числами.

Обратная матрица

Ранг матрицы

 

Выше уже говорилось, что матрицы размера т х п можно рассматривать как системы, состоящие из m n-мерных векто­ров (или из п m-мерных векторов). Поскольку любая систе­ма векторов характеризуется рангом (п. 12.2), то естественно встает вопрос о такой же характеристике и для матриц. Так как здесь имеют место две совокупности векторов — векторы-строки и векторы-столбцы, то у матрицы, вообще говоря, два ранга — строчный и столбцовый. Ответ на вопрос об их рав­ноправии дает следующая теорема.

ТЕОРЕМА 1. Строчный и столбцовый ранги любой матрицы равны.

Доказательство этой теоремы мы опускаем.

 

Стало быть, ранг любой матрицы размера т х п можно ис­кать как ранг одной из двух систем векторов: либо т векторов-строк, либо п векторов-столбцов. Как следует из п. 12.2, для прямоугольной матрицы максимальный ранг r = min (m, n). Для квадратной матрицы размером п х n ее максимальный ранг не может превышать п: rп.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.