Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Фундаментальная система решений



 

Решения однородной системы обладают следующими свой­ствами. Если вектор =1, α2,... ,αn) является решением системы (15.14), то и для любого числа k вектор k = (kα1, kα2,..., kαn) будет решением этой системы. Если решением сис­темы (15.14) является вектор = (γ1, γ2, ... ,γn), то сумма + также будет решением этой системы. Отсюда следует, что любая линейная комбинация решений однородной системы также является решением этой системы.

Как мы знаем из п. 12.2, всякая система n-мерных век­торов, состоящая более чем из п векторов, является линей­но зависимой. Таким образом, из множества векторов-решений однородной системы (15.14) можно выбрать базис, т.е. любой вектор-решение данной системы будет линейной комбинацией векторов этого базиса. Любой такой базис называется фунда­ментальной системой решений однородной системы линейных уравнений. Справедлива следующая теорема, которую мы при­водим без доказательства.

ТЕОРЕМА 4. Если ранг r системы однородных уравнений (15.14) меньше числа неизвестных п, то всякая фундамен­тальная система решений системы (15.14) состоит из п - r решений.

Укажем теперь способ нахождения фундаментальной сис­темы решений (ФСР). Пусть система однородных уравнений (15.14) имеет ранг r < п. Тогда, как следует из правил Краме­ра, базисные неизвестные этой системы x1, x2, … xr линейно выражаются через свободные переменные xr+1, xr+2 , ..., xп:

 

 

Выделим частные решения однородной системы (15.14) по сле­дующему принципу. Для нахождения первого вектора-решения 1 положим xr+1 = 1, xr+2 = xr+3 = ... = xn = 0. Затем на­ходим второе решение 2: принимаем xr+2 = 1, а остальные r - 1 свободных переменных положим нулями. Иными словами, мы последовательно присваиваем каждой свободной перемен­ной единичное значение, положив остальные нулями. Таким образом, фундаментальная система решений в векторной фор­ме с учетом первых r базисных переменных (15.15) имеет вид

 

 

ФСР (15.16) является одним из фундаментальных наборов решений однородной системы (15.14).

Пример 1. Найти решение и ФСР системы однородных урав­нений

 

 

Решение. Будем решать эту систему методом Гаусса. По­скольку число уравнений системы меньше числа неизвестных, считаем х1, x2, х3 базисными неизвестными, а x4, х5, x6 сво­бодными переменными. Составим расширенную матрицу сис­темы и выполним действия, составляющие прямой ход метода:

 

 

Преобразованная расширенная матрица соответствует системе уравнений, которая эквивалентна исходной однородной системе:

 

 

Обратный ход метода Гаусса дает значения базисных неиз­вестных, выраженные через свободные переменные:

 

 

Поскольку ранг однородной системы равен трем, то ФСР для нее состоит из трех линейно независимых векторов. По фор­мулам (15.16) при п = 6 и r = 3, беря последовательно для свободных переменных тройки чисел (1, 0, 0), (0, 1, 0) и (0, 0, 1), получаем набор фундаментальных решений:

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.