Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Решение системы общего вида



 

Пусть задана система линейных уравнений общего вида (15.1), где тn, т.е. число неизвестных не меньше числа уравнений. Представим общий порядок решения этой системы.

1. Необходимо определить совместность системы, т.е. опре­делить сначала ранги матрицы системы А и расширенной мат­рицы AB. По теореме Кронекера-Капелли если ранги этих матриц не совпадают, то система несовместна и тогда нет смысла ее решать. Если же ранги матриц А и АB равны, то система (15.1) совместна.

Определение 1. Рангом совместной системы линейных алгеб­раических уравнений называется ранг ее матрицы.

 

2. Пусть система (15.1) совместна и ранг ее равен r. Вы­делим в матрице системы (15.2) некоторый базисный минор; предположим, что именно первые r строк матриц А и АB яв­ляются базисными. Тогда по теореме о базисном миноре ос­тальные строки матрицы являются линейными комбинациями остальных строк. В свою очередь это означает, что в системе (15.1) первые r уравнений, соответствующие базисным стро­кам матрицы А, являются базисными, а остальные — их ли­нейными комбинациями. Тогда эти (mr) уравнений можно удалить из системы, причем в результате указанных элемен­тарных преобразований мы получаем эквивалентную систему:

 

 

3. Система (15.7) характерна тем, что ее ранг равен числу уравнений в ней, причем rn, т.е. ранг не превосходит числа неизвестных. Поэтому возможны два случая: либо r = n, либо r < n. В первом случае система (15.7) имеет квадратную невырожденную матрицу порядка r (см. выше) и, согласно теореме Крамера, существует единственное решение этой системы. Иными словами, если ранг системы равен числу неизвестных, то система имеет единственное решение, т.е. она является оп­ределенной.

4. Рассмотрим теперь случай, когда r < п. Перенесем в правые части уравнений (15.7) все слагаемые, содержащие не­известные xr+1, xr+2, …, xп. Тогда система принимает вид

 

 

Неизвестным xr+1, ..., xп можно придавать любые значения, и потому они называются свободными. Неизвестные х1, x2, ..., xr соответствующие базисным столбцам, называются базисными. Из системы (15.8) легко найти выражения базисных неизвест­ных через свободные, согласно теореме Крамера, рассматри­вая правые части этих уравнений как элементы столбца сво­бодных членов, содержащие xr+1, xr+2,…, хп. Можно показать, что базисные неизвестные x1, х2, ..., xr линейно выражаются через свободные неизвестные. Поскольку свободные неизвест­ные могут принимать любые значения, то в случае когда ранг совместной системы меньше числа неизвестных, эта система является неопределенной: она имеет бесчисленное множество решений.

Метод Гаусса

 

Следует заметить, что как метод обратной матрицы, так и метод Крамера являются очень трудоемкими по количест­ву вычислительной работы. Оба они требуют порядка n2n! арифметических действий для нахождения решения системы линейных уравнений. При п = 5 это составит около 3000 дей­ствий, при п = 10 — около 3,6 ∙ 108 действий. При решении серьезных задач приходится иметь дело с системами уравне­ний порядка п = 100 и более. При таких масштабах даже су­перкомпьютерам потребуется огромное время для вычисления решения. Кроме того, погрешности компьютерного округления чисел приводят к значительным ошибкам в расчетах численно­го решения систем уравнений большого порядка. Между тем существуют более экономичные методы решения систем ли­нейных уравнений, основанные на предварительном преобра­зовании расширенной матрицы системы к специальному виду. В частности, одним из них является метод Гаусса, практичес­кую реализацию которого мы приводим ниже.

Рассмотрим систему уравнений общего вида (15.1). Пусть для определенности a11 ≠ 0 (если a11 = 0, то можно переста­вить на первое место ненулевое слагаемое или начать с другого уравнения). Умножим первое уравнение системы (15.1) на чис­ло a21/a11 и затем вычтем его из второго уравнения этой системы. Умножим обе части первого уравнения на число a31/a11 и затем вычтем его из третьего уравнения и так далее, т.е. процесс заключается в последовательном вычитании первого уравнения, умножаемого на числа ai1/a11, из i-го уравнения (i = 2, 3, ... , m). Таким образом, в результате элементарных преобразований мы получим эквивалентную систему, в кото­рой начиная со второго уравнения отсутствуют слагаемые, со­держащие неизвестное x1:

 

 

где верхний индекс в скобках означает новые коэффициенты, полученные после первого шага. Для удобства записи будем оперировать расширенной матрицей системы, отделяя в ней вертикальной чертой столбец свободных членов. Итак, после первого шага, содержащего (т — 1) элементарных преобразо­ваний системы, мы переходим от расширенной матрицы (15.4) исходной системы к расширенной матрице

 

 

Второй шаг заключается в том, что теперь второе уравне­ние системы (15.7) или вторая строка матрицы (15.8) исполь­зуется для аналогичных элементарных преобразований строк с третьей по m-ю: эта строка последовательно умножается на число и вычитается из i-й строки (i = 3, 4, ... ,m). В результате этих (m - 2) элементарных преобразований полу­чаем новую расширенную матрицу, соответствующую новой эквивалентной системе уравнений. Эта матрица имеет вид

 

 

где верхний индекс означает новые коэффициенты. В случае если элемент = 0, то второе уравнение можно поменять местами с другим уравнением, у которого элемент 0.

Продолжим этот процесс аналогичным образом (т.е. на 3-м шаге преобразуются строки с 4-й по т-ю, на 4-м шаге — стро­ки с 5-й по m-ю и т.д.) до тех пор, пока не дойдем до последней m-й строки. После (r - 1)-го шага процесса последовательного исключения неизвестных мы получим следующую расширен­ную матрицу:

 

 

Последние (m - r) строк этой матрицы соответствуют урав­нениям эквивалентной системы уравнений

 

 

Эти уравнения могут появиться, если соответствующие урав­нения исходной системы (15.1) представляют собой линейные комбинации других уравнений этой системы, о чем говорилось в п. 15.1. Здесь мы не исследовали заранее систему (15.1) на совместность; поэтому если эта система несовместна, то хотя бы одно из чисел , ,..., не равно нулю. Таким образом, метод Гаусса позволяет на определенном шаге устано­вить возможную несовместность исходной системы линейных уравнений или выявить и удалить уравнения, являющиеся ли­нейными комбинациями других уравнений системы (15.1), если она совместна.

Пусть система (15.1) совместна, тогда все правые части уравнений (15.10) равны нулю, и после удаления нулевых урав­нений в эквивалентной системе и нулевых строк в расширенной матрице получаем матрицу специфического ступенчатого ви­да, ранг которой равен r. Все элементы этой матрицы, стоящие слева или ниже элементов аij, равны нулю:

 

 

Эта расширенная матрица соответствует системе уравнений ранга r, которая имеет вид

 

 

Система уравнений (15.12) уже полностью подготовлена к на­хождению решения, процесс которого осуществляется снизу вверх, т.е. от последнего уравнения к первому. Переход от сис­темы (15.1) к эквивалентной ей системе (15.12) называется пря­мым ходом, а нахождение неизвестных из системы (15.12) — обратным ходом метода Гаусса. Далее последовательность действий аналогична изложенной выше.

1. Если r = n, то система (15.12) имеет вид

 

 

Поднимаясь снизу вверх, последовательно находим (обратный ход метода Гаусса):

— из последнего r-го уравнения неизвестное xr = ;

из (r - 1)-го уравнения неизвестное xr-1 путем подста­новки в это уравнение уже найденного неизвестного xr;

из i-го уравнения неизвестное xi при подстановке в него найденных величин xr, xr-1, ..., xi-1;

— и так далее до первого уравнения, из которого при под­становке в него уже найденных величин xr, xr-1 , ..., x2 находим х1.

2. Ранг системы уравнений (15.12) меньше n. В этом слу­чае, как и ранее, объявляем неизвестные xr+1, xr+2, …, xп, сво­бодными и формируем правые части уравнений (15.12), остав­ляя в левых частях слагаемые, содержащие базисные перемен­ные x1, x2, ..., xr:

 

 

Решение этой системы находится обратным ходом метода; те­перь базисные неизвестные зависят от свободных неизвестных, которые могут принимать любые значения, а потому система (15.1) имеет бесчисленное множество решений.

Рассмотрим примеры решения систем линейных уравнений методом Гаусса.

 

Пример 2. Пример 1 п. 15.2.

Решение. Выпишем расширенную матрицу этой системы; справа в скобках укажем числа, на которые умножается соот­ветствующая строка матрицы для того, чтобы сложить ее с нижними строками. Горизонтальными стрелками показаны пе­реходы к расширенным матрицам эквивалентных систем. Пер­вую строку расширенной матрицы исходной системы умножа­ем последовательно на (-2) и (-1) и прибавляем ее соответ­ственно к 2-й и 3-й строкам этой матрицы. После первого шага, состоящего в "обнулении" первого столбца согласно формуле (15.9), получаем (номера шагов показаны перед стрелками пе­рехода)

 

 

Второй шаг прямого хода метода Гаусса состоит в операциях с преобразованной расширенной матрицей: прибавляем вторую строку, умноженную на (-3), к 3-й строке:

 

 

Последний вид расширенной матрицы является конечным эта­пом прямого хода метода (см. формулу (15.13)), после чего при­ступаем к обратному ходу, т.е. находим неизвестные, начиная с последнего. Полученная расширенная матрица соответствует системе уравнений

 

 

которая эквивалентна исходной системе. Отсюда последова­тельно находим: z = -1/2, у = 0,х = 1- 0 - (-1/2) = 3/2.

 

Пример 3. Решить методом Гаусса систему линейных уравнений

 

 

Решение. Составим расширенную матрицу этой системы, после чего выполним соответствующие шаги прямого хода ме­тода Гаусса. Имеем

 

 

Последняя нулевая строка в расширенной матрице, полученной после 3-го шага, появилась из-за того, что в исходной системе четвертое уравнение является суммой 1-го и 3-го уравнений. Система совместная, и после удаления нулевой строки заклю­чительный вид расширенной матрицы соответствует системе трех уравнений с четырьмя неизвестными (ранг системы мень­ше числа неизвестных). Полагая x4 свободной переменной, по­лучаем

 

 

Из этой системы обратным ходом метода Гаусса находим

 

 

Данная система уравнений имеет бесчисленное множество ре­шений, поскольку x4 может принимать любые значения.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.