Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Неоднородные уравнения второго порядка



 

Что касается решения неоднородных дифференциальных уравнений с постоянными коэффициентами, то их решение пол­ностью основывается на следующей фундаментальной теореме.

ТЕОРЕМА 4. Общее решение неоднородного уравнения (10.8) состоит из суммы его частного решения и общего ре­шения соответствующего однородного уравнения (10.9).

В ряде случаев удается "угадать" или подобрать частное решение неоднородного уравнения по виду его правой части. Рассмотрим несколько примеров решения таких уравнений.

 

Решение. Соответствующее однородное уравнение было рассмотрено в примере 1. Исходя из вида правой части, бу­дем искать частное решение данного неоднородного уравнения в виде константы: = С. Подставляя это решение в уравне­ние, получаем, что С = 2. Отсюда следует, что общее решение неоднородного уравнения имеет вид

 

 

Решение. Для отыскания частного решения этого неодно­родного уравнения воспользуемся методом неопределенных ко­эффициентов, не содержащим процесса интегрирования. Бу­дем искать это решение в виде многочлена той же степени, что и правая часть, т.е. = Ax + В, где А и В — неизвест­ные коэффициенты. Дифференцируя дважды и подставляя в исходное уравнение, получаем

 

 

Приравнивая коэффициенты при одинаковых степенях х в обе­их частях этого равенства, находим 9А = 9, -6А + 9В = 0. Отсюда А = 1, В = 2/3, т.е. = x + 2/3. Соединяя это реше­ние с общим решением соответствующего однородного урав­нения (см. пример 2), получаем общее решение неоднородного уравнения:

 

 

Решение. В этом случае частное решение (x) ищем в виде Се2x. Подстановка в данное уравнение дает C = 1. Соединяя полученное частное решение с общим решением однородного уравнения (см. пример 3), окончательно имеем

 

Примечание 1. В общем случае, когда характеристи­ческое уравнение содержит нулевой корень кратности s, а пра­вая часть неоднородного уравнения представляет собой много­член Рп(х) степени п, частное решение этого уравнения ищется в виде Qn(x)xs, где Qn(x) — многочлен степени п с неизвестны­ми коэффициентами, которые определяются вышеуказанным методом.

Примечание 2.В общем случае, когда правая часть неоднородного уравнения имеет вид еrx, его частное решение ищется в виде (х) = xserx, где s — кратность корня k = r в характеристическом уравнении (10.12).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.