Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Определение производной



 

Пусть функция f(x) определена на некотором промежутке X. Придадим значению аргумента в точке x0 Х произволь­ное приращение Δx так, чтобы точка x0 + Δx также принад­лежала X. Тогда соответствующее приращение функции f(x) составит Δу = f(x0 + Δx) — f(x0).

Определение 1. Производной функции f(x) в точке x0 назы­вается предел отношения приращения функции в этой точке к приращению аргумента при Δx 0 (если этот предел сущест­вует).

Для обозначения производной функции употребимы симво­лы у' (x0) или f'(x0):

 

 

Если в некоторой точке x0 предел (4.1) бесконечен:

 

 

то говорят, что в точке x0 функция f(x) имеет бесконечную производную.

Если функция f(x) имеет производную в каждой точке мно­жества X, то производная f'(x)также является функцией от аргумента х, определенной на X.

 

Геометрический смысл производной

 

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f(x) в точке М называется предельное положение секущей MN, ког­да точка N стремится к точке М по кривой f(x).

Пусть точка М на кривой f(x) соответствует значению ар­гумента x0, а точка N — значению аргумента x0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx. Из треугольника MNA следует, что

 

 

 

Если производная функции f(x) в точке x0 существует, то, согласно (4.1), получаем

 

 

Отсюда следует наглядный вывод о том, что производная f'(x0) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной кграфику функции у = f(x) в точке М(x0, f(x0)). При этомуголнаклона касательной определяется из формулы (4.2):

 

 

Физический смысл производной

 

Предположим, что функция l = f(t) описывает закон дви­жения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) — это путь, пройденный за интервал времени Δt, а отношение Δlt — средняя скорость за время Δt. Тогда предел определяет мгновенную скорость точки в момент вре­мени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f'(x), тем больше угол наклона касательной к кривой, тем круче график f(x) и быстрее растет функция.

 

Правая и левая производные

 

По аналогии с понятиями односторонних пределов функ­ции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x0 называется правый (левый) предел отноше­ния (4.1) при Δx 0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

 

 

Если функция f(x) имеет в точке x0 производную, то она имеет левую и правую производные в этой точке, которые сов­падают.

Приведем пример функции, у которой существуют одно­сторонние производные в точке, не равные друг другу. Это f(x) = |x|. Действительно, в точке х = 0 имеем f’+(0) = 1, f'-(0) = -1 (рис. 4.2) и f’+(0) ≠ f’-(0), т.е. функция не имеет производной при х = 0.

 

 

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точ­ке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

 

ТЕОРЕМА 1. Если функция дифференцируема в точке x0, то она и непрерывна в этой точке.

 

Обратное утверждение неверно: функция f(x), непрерыв­ная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x|; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, по­скольку из первого автоматически вытекает второе.

 

Уравнение касательной к графику функции в данной точке

 

Как было указано в разделе 3.9, уравнение прямой, про­ходящей через точку М(x0, у0) с угловым коэффициентом k имеет вид

 

 

Пусть задана функция у = f(x). Тогда посколькуее произ­водная в некоторой точке М(x0, у0) является угловым коэффи­циентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функ­ции f(x) в этой точке имеет вид

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.