Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Понятие сложной функции



Определение. Если на некотором промежутке Х определена функция z = φ(x) с множеством значений Z и на множестве Z определена функция у = f(z), то функция у = f[φ(x)] называ­ется сложной функцией от x (или суперпозицией функций), а переменная z — промежуточной переменной сложной функции.

Приведем примеры сложных функций.

Пример 1.у = cos сложная функция, определенная на полубесконечном интервале (— ,1], так как у = f(z) = cos z, z = φ(x) = .

Пример 2. у = — сложная функция, определенная на всей числовой прямой, поскольку у = f(z) = еz , z = φ(x) = —х2.

Пример 3. у= сложная функция, определенная на полубесконечных интервалах (- ,0) и (0, + ), так как y = f(z) = z3/2, z = φ(x) = (1 + x) / x.

ТЕОРЕМА 8. Пусть функция z = φ(x) непрерывна в точке x0, а функция у = f(z) непрерывна в точке z0 = φ(x0). Тогда сложная функция у = f[φ{x)] непрерывна в точке x0 = 0.

Пример 4. Функция y = tg (x2 + 2x) непрерывна в точке x = 0, так как функция z = х2 + х непрерывна в точке х = 0, а функ­ция у = tg z непрерывна в точке z = 0.

 

Элементы аналитической геометрии на плоскости

 

Уравнение линии на плоскости

 

Пусть на плоскости задана система координат. Рассмот­рим уравнение вида

 

 

Говорят,что уравнение (3.9) определяет (задает) линию L в системе координат Оху. Вообще говоря, линии на координат­ной плоскости могут быть самыми различными.

 

Линии первого порядка

 

К линиям первого порядка относятся те линии, для кото­рых задающее их уравнение (3.9) содержит переменные x и у только в первой степени. Иными словами, такие линии описы­ваются уравнениями вида

 

 

где А, В и С — постоянные числа. Из этого уравнения можно выразить переменную у как функцию от аргумента х при В ≠ 0:

 

 

Уравнение (3.11) называют уравнением прямой с угловым ко­эффициентом k = tg φ, где φ — угол наклона прямой к положительному направлению оси Ох (рис. 3.9). Если k = 0, то прямая параллельна оси Ох и отстоит от нее на b масштабных единиц.

 

Рис. 3.9

 

 

Определим самые необходимые элементы знания о прямых на плоскости.

1. Кроме "классического" уравнения прямой (3.11) следует знать еще две его разновидности. Первая из них — это уравне­ние прямой с заданным угловым коэффициентом k, проходящей через заданную точку М0(x0, у0):

 

 

Другой вид — это уравнение прямой, проходящей через две заданные точки на плоскости M1(x1, y1) и М22, у2):

2. Угол между прямыми. Рассмотрим две прямые, заданные уравнениями у = k1x + b1 и у = k2x + b2, где k1 = tg φ1 и k2 = tg φ2 (рис. 3.10). Пусть φ — угол между этими прямы­ми. Тогда φ = φ2φ1 и мы получаем tg φ = tg (φ2φ1) = или, что то же самое,

 

 

Рис. 3.10

 

Формула (3.12) определяет один из углов между пересекающи­мися прямыми; второй угол равен π - φ.

Из равенства (3.12) вытекают условия параллельности и перпендикулярности прямых. В самом деле, если прямые па­раллельны, то

 

 

Если прямые перпендикулярны, то α2 = π/2 + α1, откуда tg α2 = -ctg α1 = -1 / tg α1, или окончательно

 

Пример 1. Найти угол между прямыми, заданными уравне­ниями у = 2x - 5 и у = -3x + 4.

Решение. Подставляя в формулу (3.12) значения k1 = 2 и k2 = -3, имеем

 

 

откуда получаем, что один из углов равен φ = π / 4.

3. Расстояние от точки до прямой. Пусть прямая за­дана уравнением общего вида (3.10). Тогда расстояние dотпроизвольной точки М0(x0, y0) до прямой (рис. 3.11)даетсяформулой

 

Рис. 3.11

Линии второго порядка

Рассмотрим здесь три наиболее используемыxвида линий:эллипс, гиперболу и параболу.

1. Эллипс. Линия, для всех точек которой сумма рассто­яний от двух данных точек, называемых фокусами, есть вели­чина постоянная и большая, чем расстояние между фокусами, называется эллипсом.

Согласно определению эллипса, сумма расстояний от произвольной точки М на этой линии до его фокусов F1 и F2 по­стоянна (рис. 3.12):

 

 

Рис. 3.12

 

Отсюда можно вывести уравнение эллипса в его основной (канонической) форме:

 

 

где а и b — полуоси эллипса, b2 = а2с2, точка O (0,0) — центр эллипса, с — половина расстояния между фокусами эл­липса. Из уравнения (3.13) следует, что оси эллипса являются его осями симметрии, а точка их пересечения — центром его симметрии.

 

 

В частном случае, когда a = b, фокусы эллипса сливаются, т.е. с = 0, и мы имеем окружность радиуса а с центром в начале координат. Характеристикой эллипса, показывающей меру его вытянутости, является эксцентриситет — величина, определяемая отношением

 

 

2. Гипербола. Гиперболой называется линия, для всех то­чек которой модуль разности расстояний от двух данных то­чек, называемых фокусами, есть величина постоянная и мень­шая, чем расстояние между фокусами.

На рис. 3.13 показаны все основные элементы гиперболы. Разность расстояний от произвольной точки М на гиперболе до фокусов F1 и F2, согласно определению, есть величина по­стоянная:

 

 

Из этой основной предпосылки выводится каноническое урав­нение гиперболы, которое имеет вид

 

где b2 = с2а2.

Нетрудно видеть, что прямые у = ± х являются наклонными асимптотами гиперболы. Линия (3.14) имеет две оси сим­метрии, точка пересечения которых является центром симмет­рии гиперболы.

3. Парабола. Параболой называется линия, все точки ко­торой находятся на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой дирек­трисой и не проходящей через фокус.

Согласно определению, точка М(х, у) лежит на параболе, если r1 = r2. Отсюда и выводится каноническое уравнение параболы, которое имеет вид

 

 

График параболы (3.15) показан на рис. 3.14. Нетрудно видеть, что перемена осей координат приводит к более привычному уравнению параболы вида у = Ах2, где А — постоянное число.

 

Рис. 3.14

УПРАЖНЕНИЯ

 

Найти области определения функций, заданных следующими формулами.

3.1. у = 3x - 2.3.2. у = х2 – 5x + 6.3.3. . 3.4. . 3.5. . 3.6. . 3.7. . 3.8. . 3.9. . 3.10. . 3.11. . 3.12. . 3.13. . 3.14. .

3.15.f(x) = x2 + x – 2, найти f(0), f(1), f(-3).3.16.f(x)=arccos(lg x), найти f(1/10), f(1), f(10).3.17. .

3.18. Спрос и предложение на некоторый товар на рынке опи­сываются линейными зависимостями вида

 

 

1) Определить равновесную цену; 2) установить графичес­ким способом, является ли модель паутинного рынка "скручи­вающейся". Варианты задания параметров зависимостей спро­са и предложения:

а) а = 19, b = 2, с = 3, d = 2; б) а = 15, b = 3, с = 1, d = 4;в)а = 11, b = 3, с = 3, d = 1; г) а = 23, b = 3, с = 5, d = 6.

 

Найти пределы.

 

3.19. . 3.20. . 3.21. . 3.22. . 3.23. . 3.24. . 3.25. . 3.26. . 3.27. . 3.28. . 3.29. . 3.30. . 3.31. . 3.32. . 3.33. .

 

Найти точки разрыва функций и определить типы разрывов.

3.34. .3.35. .3.36. . 3.37. .3.38. .3.39. .3.40. .

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.