Прежде всего укажем свойства, которые непосредственно вытекают из определения неопределенного интеграла.
Следующие два свойства называются линейными свойствами неопределенного интеграла.
Заметим, что последнее свойство справедливо для любого конечного числа слагаемых в подынтегральной функции.
Таблица основных неопределенных интегралов
Ранее мы получили таблицу основных производных элементарных функций. Приводимая ниже таблица основных неопределенных интегралов представляет собой вычислительный аппарат интегрального исчисления. Часть формул таблицы непосредственно следует из определения интегрирования как операции, обратной дифференцированию. Справедливость всех формул легко проверить дифференцированием.
Интегралы этой таблицы принято называть табличными.
Как было установлено в п. 4.4, операция дифференцирования не выводит нас из класса элементарных функций. С операцией интегрирования дело обстоит иначе: интегралы от некоторых элементарных функций уже не являются элементарными функциями. Укажем некоторые из них.
Каждый из этих интегралов есть функция, которая не является элементарной, хотя подынтегральные функции в этих интегралах являются элементарными. Они играют большую роль в прикладных науках; так, интеграл 1 является одним из основных в теории вероятностей и статистике.
Как правило, интегралы, с которыми приходится иметь дело в различных приложениях, не выражаются элементарными функциями (или, как принято говорить, являются "неберущимися"). Тем не менее существуют достаточно хорошо разработанный аппарат приближенных формул с использованием элементарных функций и методы приближенных расчетов, позволяющие с любой степенью точности оценивать и вычислять "неберущиеся" интегралы.
Основные методы интегрирования
Непосредственное интегрирование
Вычисление интегралов с использованием основных свойств неопределенных интегралов и таблицы простейших интегралов называется непосредственным интегрированием. Покажем это на примерах.
Метод подстановки
Замена переменной интегрирования является одним из самых эффективных приемов сведения неопределенного интеграла к табличному. Такой прием называется методом подстановки, или методом замены переменной. Он основан на следующей теореме.
ТЕОРЕМА 1.Пусть функция х = φ(t) определена и дифференцируема на некотором промежутке Т, а Х — множество значений этой функции, на котором определена функция f(x). Тогда если функция f(x) имеет первообразную на множестве Х, то на множестве Т справедлива формула
Выражение (6.1) называется формулой замены переменной в неопределенном интеграле. Рассмотрим применение этого приема на примерах вычисления интегралов.
Решение. Здесь разложение по биному Ньютона представляется весьма сложным. Введем новую переменную t = х — 1. Тогда х = t + 1, dx = dt, и исходный интеграл преобразуется следующим образом:
Решение. Положим t = 2 - х, тогда х = 2 - t, dx = -dt. Отсюда по формуле (6.1) получаем
Решение. Преобразуем этот интеграл, переписав его в виде
Из вида подынтегральной функции следует, что целесообразно ввести новую переменную t = sin x. Тогда 1 — sin2х = 1 — t2, dt = cos x dx; подстановка в интеграл дает
Здесь использован табличный интеграл 10.
Решение. Введем новую переменную t = x4 и выполним все необходимые операции: x8 + 1 = t2 + 1, dt = 4xзdx, откуда имеем
Решение. Положим t = х2 + 1, тогда dt = 2х dx или xdx = , и данный интеграл принимает вид табличного интеграла: