Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Гироскопический момент



Перейдем к рассмотрению обратной задачи динамики гироскопа.

Пусть гироскоп с двумя степенями свободы (см. рис.4.1.б) вращается с угловой скоростью вокруг собственной оси симметрии АВ, а ось, в свою очередь, вращается с угловой скоростью вокруг вертикальной оси. Момент внешних сил, под действием которого прецессирует гироскоп, создается силами, приложенными к оси гироскопа со стороны подшипников А и В. По третьему закону Ньютона на подшипники со стороны оси гироскопа действуют равные и противоположно направленные силы и . Главный момент этих сил относительно неподвижной точки О называется гироскопическим моментом. Он может быть вычислен на основании (4.3) и (4.4):

. (4.6)

Отсюда следует правило Грюэ – Жуковского: при сообщении оси быстро вращающегося гироскопа принудительной прецессии его ось стремиться кратчайшим путем установиться таким образом, чтобы направления векторов и совпадали.

ПРИМЕР 4.2. Определить усилия гироскопической природы, действующие на опоры ротора турбины, при циркуляции катера (см. рис.4.2). Осевой момент инерции ротора турбины , угловая скорость его вращения , расстояние между опорами АВ= , радиус циркуляции и скорость движения катера известны.

РЕШЕНИЕ. Подставляя в (4.6) значение гироскопического момента (здесь - модуль сил ) и , находим: .

 

Заметим, что найденные реакции могут существенно превышать реакции от силы веса турбины. Действуя через подшипники на корпус катера, они могут вызвать его дифферент. Подобный эффект наблюдается и у винтовых самолетов на виражах.

 

Вопросы и задачи для самоконтроля

1. Сформулируйте основное допущение элементарной теории гироскопов.

2. Запишите теорему об изменении кинетического момента в трактовке Резаля.

3. Как найти угловую скорость прецессии оси гироскопа, если известен момент внешних сил, на него действующих (осевой момент инерции гироскопа и скорость его вращения вокруг собственной оси заданы)?

4. Что такое гироскопический момент и как его вычислить, если известны осевой момент инерции гироскопа, а так же угловые скорости прецессии и собственного вращения.

5. Решите следующие задачи из [2] : 40.1; 40.4; 40.8; 40.12.

 

 

Элементарная теория удара

Основные допущения

При контакте двух тел в точке соприкосновения возникают равные противоположно направленные силы действия и противодействия. Закон изменения этих сил приведен на рис.5.1. Импульс силы за время ее действия определяется как

. (5.1)

Поскольку при ударе время действия силы несоизмеримо меньше промежутков времени, для которых обычно рассматривается движение, величину полагают равной нулю. В таком случае рассмотрение результата действия силы за промежуток времени заменяется рассмотрением приложения мгновенного импульса конечной величины (5.1). Мгновенное действие силы, при котором ее импульс имеет конечную величину, называется ударом, а соответствующая сила – ударной силой.

Найдем, как изменяется скорость и положение материальной точки при действии ударной силы (мгновенного импульса). Для этого запишем в интегральной форме теорему об изменении ее количества движения

или , (5.2)

где - масса точки, а и - ее скорость в конце и в начале удара, соответственно. Так как импульс имеет конечную величину, то при ударе скорость точки мгновенно изменяется на конечную величину.

Перепишем (5.2) в виде . Разделив переменные и взяв интегралы от обеих частей равенства, получим (используя теорему о среднем из курса интегрального исчисления)

, (5.3)

где и - радиусы – векторы точки в начальный и конечный момент времени, а - среднее значение импульса на промежутке [0; ]. Анализ (5.3) показывает, что при действии ударной силы перемещение точки отсутствует (при перемещение точки ).

Если на точку действует ударная сила и обычная медленно меняющаяся во времени сила , то их суммарный импульс за время будет

, где последний интеграл записан по теореме о среднем. Очевидно, что при последнее слагаемое так же стремиться к нулю и .

На этом основании при исследовании процессов, происходящих при ударе, медленно изменяющиеся ограниченные по модулю силы не учитываются.

Все сказанное справедливо для любых сил, изменение которых происходит по закону, изображенному на рис.5.1 (например, при взрыве).

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.