Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Допущения элементарной теории гироскопов. Свойства гироскопа



Гироскопом называется симметричное твердое тело, быстро вращающееся вокруг оси симметрии (собственное вращение). Эта ось может менять свою ориентацию в пространстве. Примерами таких тел могут служить волчок с неподвижной точкой О (рис.4.1.а), гироскоп с двумя (рис.4.1.б) и тремя (рис.4.1.в) степенями свободы.

Благодаря ряду специфических свойств гироскопические устройства широко применяются в технике. Эти свойства можно достаточно полно объяснить с помощью элементарной (приближенной) теории гироскопов.

Пусть однородное тело совершает быстрое вращение вокруг собственной оси симметрии с угловой скоростью , а эта ось, в свою очередь, вращается с угловой скоростью вокруг неподвижной оси (см. рис. 4.1.а). Для абсолютной угловой скорости справедлива формула .

Свяжем с телом координатную систему Оxyz так, чтобы ось совпадала с осью собственного вращения; оси этой системы являются главными осями инерции тела.

Выражения для проекций кинетического момента тела на оси и имеют вид

, (4.1)

где - соответствующие осевые моменты инерции тела.

В общем случае направления векторов и не совпадают. Однако, если , то и можно приближенно записать

. (4.2)

Равенство (4.2) выражает основное допущение элементарной теории гироскопов: кинетический момент гироскопа направлен по собственной оси симметрии.

Для изучения движения гироскопа (точнее – его оси) воспользуемся теоремой об изменении кинетического момента (2.18) в интерпретации Резаля: скорость конца вектора кинетического момента равна главному моменту внешних сил относительно неподвижной точки О, т.е.

. (4.3)

Соотношение (4.3) позволяет найти закон движения оси гироскопа по заданному моменту внешних сил либо по заданному движению гироскопа определить момент сил, вызывающий такое движение.

Рассмотрим основные свойства гироскопа с тремя степенями свободы, изображенного на рис.4.1.в. Если гироскоп уравновешен, то и согласно (4.3) . В таком случае ось гироскопа сохраняет неизменным свое направление в инерциальной координатной системе отсчета при любых движениях основания гироскопа. Отмеченное свойство оказывается полезным при конструировании гирогоризонталей и горовертикалей, а так же указателей направлений на условно неподвижные звезды.

Отметим, что если подобрать специальным образом , можно добиться сохранения гироскопом неизменности направления своей оси и в неинерциальной системе отсчета (например, в системе отсчета, связанной с Землей). Последнее свойство используется при конструировании гирокомпасов.

Другим важным свойством оказывается нечувствительность быстро вращающегося гироскопа к действию кратковременных сил. Причина - только во время действия таких сил (в действительности после кратковременного действия сил ось гироскопа совершает затухающие малые нутационные колебания, которыми в элементарной теории гироскопов пренебрегают).

Все эти свойства гироскопов широко используются в системах навигации.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.