Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Несобственные интегралы



 

При рассмотрении определенного интеграла как предела интегральных сумм предполагалось, что подынтегральная функция, во-первых, задана на конечном отрезке и, во-вторых, ограничена. Данное выше определение определенного интегра­ла не имеет смысла при невыполнении хотя бы одного из этих условий. Нельзя разбить бесконечный интервал на конечное число отрезков конечной длины; при неограниченной функции интегральная сумма не имеет предела. Тем не менее возможно обобщить понятие определенного интеграла и на эти случаи, с чем и связано понятие несобственного интеграла.

Определение. Пусть функция f(x) определена на промежутке [а, + ) и интегрируема на любом отрезке [a, R], R > 0, так что интеграл

 

 

имеет смысл. Предел этого интеграла при R называется несобственным интегралом с бесконечным пределом интег­рирования:

 

 

Если этот предел конечен, говорят, что несобственный ин­теграл (7.16) сходится, а функцию f(x) называют интегри­руемой на бесконечном промежутке [а, ); если же предел в (7.16) бесконечен или не существует, то говорят, что несобст­венный интеграл расходится.

Аналогичным образом вводится понятие несобственного интеграла по промежутку (- , b]:

 

 

Наконец, несобственный интеграл с двумя бесконечными пре­делами можно определить как сумму несобственных интегра­лов (7.16) и (7.17):

 

 

где с — любое число.

Геометрический смысл несобственного интеграла первого рода заключается в следующем: это площадь бесконечной об­ласти (рис. 7.8), ограниченной сверху неотрицательной функ­цией f(x), снизу — осью Оx, слева — прямой х = а.

 

 

Рассмотрим несколько примеров несобственных интегра­лов.

 

Здесь пришлось разделить исходный интеграл на два и к каж­дому из них применить определение несобственного инте­грала.

Пример 4. , где α — некоторое положительное число.

Решение. Рассмотрим разные случаи для числа α.

1. При α = 1 для любого R > 0 имеем

 

 

т.е. конечного предела не существует и несобственный интег­рал расходится.

2. При α ≠ 1 для любого R > 0 получаем

 

 

Следовательно, данный интеграл сходится при α > 1 и рас­ходится при α ≤ 1.

В приведенных выше примерах сначала с помощью пер­вообразной вычислялся интеграл по конечному промежутку, а затем осуществлялся переход к пределу. Между тем если для функции f(x) существует первообразная F(x) на всем проме­жутке интегрирования [а, ), то по формуле Ньютона-Лейб­ница

 

 

Отсюда следует, что несобственный интеграл существует (схо­дится) в том и только в том случае, когда существует конеч­ный предел

 

 

и тогда можно записать:

 

 

Аналогичный вывод справедлив и для несобственных интегра­лов вида (7.17) и (7.18):

 

 

Иными словами, формула Ньютона-Лейбница (основная фор­мула интегрального исчисления) применима и в случае, когда пределы интегрирования бесконечны.

УПРАЖНЕНИЯ

 

Вычислить определенные интегралы.

 

 

Найти площади фигур, ограниченных следующими линиями.

 

 

Найти объемы тел, образованных вращением вокруг оси Ох фигуры, ограниченной следующими линиями.

 

 

Вычислить несобственные интегралы в случае их сходимости.

 

7.32. Найти площадь, заключенную между кривой у = и ее асимптотой при х ≥ 0.

7.33. Найти объем тела, образованного вращением вокруг оси Ох дуги кривой у = e-x от х = 0 до х = + .

 

Решить задачи с экономическим содержанием.

7.34. Найти стоимость перевозки М т груза по железной доро­ге на расстояние 1 км при условии, что тариф у перевозки одной тонны убывает на а р. на каждом последующем километре.

7.35. Мощность у потребляемой городом электроэнергии вы­ражается формулой

 

 

где t — текущее время суток. Найти суточное потребление электроэнергии при а = 15000 кВт, b = 12000 кВт.


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.