Рассмотрим на плоскости Оху фигуру, ограниченную графиком непрерывной и положительной функции f(x) на отрезке [а, b], отрезком [а, b] и вертикальными прямыми х = а и х = b (рис. 7.2). Эту фигуру будем называть криволинейной трапецией.
Величина площади криволинейной трапеции равна определенному интегралу от функции f(x) на отрезке [а, b]:
Если фигура ограничена сверху и снизу неотрицательными функциями f(x) и g(х) соответственно, непрерывными на отрезке [а, b], то площадь S криволинейной фигуры равна разности площадей криволинейных трапеций, ограниченных сверху графиками f(x) и g(х):
Рассмотрим задачи на вычисление площадей фигур.
Пример 1. Найти площадь фигуры, ограниченной графиком функции у = ln x ≥ 0, осью Ох и прямой х = 2.
Решение. Отрезок интегрирования: 1 ≤ х ≤ 2 (рис. 7.3), так что искомая площадь согласно формуле (7.14) равна:
Пример 2. Найти площадь фигуры, ограниченной линиями у = , у = х2.
Решение. Вычислим абсциссы точек пересечения указанных кривых, для чего приравняем правые части этих уравнений: х2 = . Корни этого уравнения суть x1 = 0, x2 = 1. Следовательно, площадь фигуры, ограниченной сверху функцией у = и снизу функцией у = x2 (рис. 7.4), дается определенным интегралом на отрезке [0,1]:
Объем тела вращения
Рассмотрим тело, которое образуется при вращении вокруг оси Ох криволинейной трапеции, ограниченной сверху непрерывной и положительной на отрезке [а, b] функцией f(x) (рис. 7.5). Объем этого тела вращения определяется формулой
Если тело образовано вращением криволинейной трапеции вокруг оси Оу, то, выражая х через у как обратную функцию, мы можем получить аналогичным образом формулу для объема тела вращения:
Решение. Искомый объем вращения равен разности объемов, образованных вращением криволинейных трапеций с верхними границами соответственно у = и у = х2. Пределы интегрирования определяются по точкам пересечения этих кривых: а = 0 и b = 1. По формуле (7.15) получаем
Пример 4.у = eх, х = 0, х = 1, у = 0 вокруг оси Оу.
Ррешение. Выражаем х через у: х = ln у; промежуток интегрирования [1, е] определяется очевидным образом. Объем тела вращения (рис. 7.6) равен разности объемов соответственно цилиндра радиуса 1 и высоты е и тела вращения вокруг оси Оу криволинейной трапеции, ограниченной сверху кривой х = ln у. Согласно формуле (7.15) получаем