Изменилось понятие частицы. Классич. представление о частице как обособл. индивидууме, резко отграниченном от своего окружения, обладающем «своим» движением по данной траектории, действующем как целое и испытывающем внешние воздействия только в данном месте (данной «точке»), сменилось представлением о М. как относительно индивидуальной, не обладающей ни строго определ. местоположением (координатой), ни строго выделенным собств. движением (импульсом и кинетич. энергией), «чувствующей» воздействие поля во всей области своей локализации; освобождаясь от связи с данной системой, становясь «свободной», М. приобретает индивидуальное движение («свой» импульс), но дело-кализуется; и наоборот, будучи «привязана» к малой области, локализуясь в ней, М. теряет индивидуальное движение. Входя в к.-л. систему наряду с др. такими частицами, М. оказывается лишь функциональной частью системы; она «неотличима» от др. таких же частиц. Во всем этом проявляется двойств, природа М., наличие у них волновых черт.
Существование частицы как целого в квантовой теории рассматривается как следствие дискретности ее внутренних изменений; она характеризуется определенными квантовыми числами (в широком смысле).
Изменилось понятие движения (перемещения). Двойств, характер движения М. вынуждает отказаться от классич. представления о переносе себе тождественной частицы по определ. траектории. Высказывались мнения, что процесс движения представляет собой регенерацию М., воспроизведение ее в др. месте (Ф. Бопп, Я. И. Френкель и др.). Идея регенерации М. различной степени сложности слабо разработана; для элементарных М. она естественно вытекает из всей совокупности понятий квантовой теории поля, рассматривающих само существование М. как процесс непрерывного обмена виртуальными частицами со средой, в частности с вакуумом. Рассмотрение движения как воспроизведения М. в др. месте связано и с квантовым пониманием взаимодействия М. с другими как процесса «обмена» общими материальными элементами.
Кардинальное значение для общей картины мира имеет понятие согласования движений М. Мы встречаемся здесь с совершенно новой, неизвестной классич. физике идеей интегрального, «несилового» взаимодействия движений многих одинаковых М., входящих в одну систему: таков, по-видимому, смысл принципа Паули. Согласование движений М. соответствует их волновой природе.
Таков «образ» М., суммирующий ее наиболее общие черты, и этот «образ» гораздо глубже проникает в сущность вещей, чем концепция материальной частицы, ее движения и взаимодействия, к-рая существовала в классич. физике.
Появилась возможность понять, опираясь на физич. теорию, каким образом при столь малом «ассортименте» устойчивых элементарных частиц могло появиться в природе множество качественно различных видов материальных образований, к-рые отнюдь нельзя сводить к конгломерату этих простейших частиц. Ибо из одного и того же «набора» частиц могут формироваться существенно различные системы. Стало ясно, что специфич. свойства каждой системы имеют своего специфич. материального носителя. Структурные элементы системы отнюдь не совпадают с теми М., на к-рыо система может быть разложена в пределе. Структурный элемент системы — это атом в молекуле, сегмент в макромолекуле, домен в ферромагнетике; причем атом, как часть молекулы, отнюдь не тождествен по ряду своих свойств свободному атому. Можно сказать, что в значит, степени свойства частицы определяются системой, частью к-рой она является. Т. о., физика приходит к диалектич. пониманию соотношения части и целого; в филос. отношении физика прошла за последние 40 лет тот же путь, к-рый проделала, напр., политич. экономия, отказавшись от понимания общества как совокупности независимых индивидуумов («робинзонов») с извечными свойствами и перейдя к рассмотрению неловека как существа социального.
Именно эти идеи, представляющие собой конкретизацию и развитие воззрений диалектич. материализма на материю и движение, предопределили огромные успехи квантовой физики в решении многообразных проблем строения материи.
Разумеется, диалектически противоречивый «образ» М., формирующийся на основе квантовой теории, отнюдь не представляет собой модели в обычном понимании и не является чем-то завершенным. Как уже было отмечено, совр. квантовая теория еще далека от ответа на многие вопросы, выдвигаемые экспериментом. Не существует удовлетворит, теории превращения М.; недостаточно ясна и сущность волновых свойств М.,— др. словами, природа ее движения. Более того, нет единого понимания физич. сущности квантовой теории. Осн. ее положения получили принципиально различное истолкование со стороны физиков и философов разных направлений. Сами творцы квантовой теории вкладывали различный смысл в соотношения, образующие формальный аппарат квантовой механики. Это объясняется тем, что квантовая теория была создана на основе ряда математич. гипотез, физич. смысл к-рых первоначально был неясен.
Философская дискуссия об основных понятиях квантовой механики. Принципиальные разногласия возникли сразу же при истолковании исходных для квантовой теории соотношений де Бройля, выражающих двойств, природу М. В чем физич. смысл двойственности, как представить себе связь корпускулярных и волновых величин?
Сам Л. де Бройль ейачала придерживался взглядов, получивших название (в несколько упрощенном
436 МИКРОЧАСТИЦЫ
варианте) концепции волны-пилота. Согласно этой концепции, частица и волна сосуществуют, причем волна «ведет» за собой частицу (отсюда название). Частица — это локальное материальное образование (типа волнового пакета), почему-то сохраняющая свою устойчивость; частица является единств, реальным объектом с динамич. свойствами, поскольку именно она обладает энергией и импульсом. Ведущая же «пси-волна» лишь управляет характером движения частицы. Сама пси-волна не несет энергии; значение ее амплитуды в каждой точке пространства определяет лишь вероятность локализации частицы вблизи этой точки. Движение частицы (по неизв. причинам) согласовано с этим «бесплотным» объектом. Кроме того, если пси-волна проходит через среду, от к-рой она частично отражается, то та часть волны, с к-рой частица в дальнейшем оказывается не связанной, вообще исчезает. Все это построение настолько неестественно, что сам де Бройль от него вскоре отказался. Концепция де Бройля возродилась только в 50-х гг., но существенно видоизмененная (см. ниже).
Э. Шрёдингер пытался представить частицу как чисто волновое образование, т. е. по сути дела упразднить идею двойственности. По Шрёдингеру, частица представляет собой волновой пакет; с этой т. зр. волна первична, а частица есть лишь место наибольшей концентрации энергии волны. Но в таком случае нельзя понять устойчивости М. при любых процессах, поскольку волновой пакет расплывается за ничтожную долю секунды даже при свободном движении. Кроме того, в замкнутой микросистеме — атоме или молекуле — пси-волна электрона распространена с заметной амплитудой во всем пространстве системы. Но тогда непонятно, почему столкновение быстрой частицы с атомарным электроном происходит локально, вблизи к.-л. точки внутри атома.
Т. о., создать наглядную модель М. в духе классич. физики оказалось невозможным. На первый план выступила противоположная концепция, нашедшая свое выражение в работах Гейзенберга и Бора и получившая широкое признание.
Гейзенберг разработал в 1925 другой вариант квантовой механики, исходя из др. соображений, чем Шрёдингер. Гейзенберг искал такой способ описания внутриатомных процессов, к-рый находился бы в соответствии с дискретным характером испускаемого атомом спектра излучения, зависящего и от начальных и от конечных состояний атома. Представление об электроне, к-рый движется в атоме по опред. орбите, оказывается явно не соответствующим этому требованию. Не следует ли считать, что понятие орбитального движения атомарного электрона вообще должно быть исключено из теории, поскольку оно противоречит опыту, и заменено другим способом описания? Гейзенберг нашел такой способ: движение атомарного электрона считается не орбитальным, а колебат. процессом, характеризуемым не обычными координатами и импульсами, а др. величинами — т. н. матрицами координат и импульсов, связи между к-рыми лишь аналогичны классическим. Гейзенберг показал, что при таком способе описания движения электрона имеют место соотношения неопределенностей между координатой и импульсом. В дальнейшем была доказана эквивалентность способов описания движения М., найденных Гейзенбергом и Шрёдингером.
В отличие от Шрёдингера, Гейзенберг отказывается от наглядного представления движения атомарного электрона. Однако какова же связь между результатами измерения явлений микромира и тем,что там действительно происходит? Ответ Гейзенберга на этот вопрос, данный им в 1925—27 гг., заключался в следующем. По Гейзенбергу, физика должна пользоваться только такими понятиями и величинами, к-рые
основаны на измерениях; все, что принципиально не поддается измерению, должно быть изгнано из науч. языка (начало принципиальной наблюдаемости). Отсюда и проистекает та интерпретация квантовой механики, к-рая была дана в 1928—29 Гейзенбергом и Бором. Согласно этим взглядам, наука в конечном счете имеет дело только с показаниями макроскопич. приборов, стоящих «на выходе» любой экспериментальной установки и дающих на макроскопич. языке показания в виде таких величин, как координата, импульс, энергия, момент и т. д. Но описания движения М. в классич. смысле слова, т. е. значения ее координаты и импульса в каждый момент времени, макроприбор не может дать вследствие принципиально неполной контролируемости взаимодействия любого прибора с М., обусловленной атомизмом действия; имеют место соотношения неопределенностей, в силу к-рых измерение координаты нарушает возможность одноврем. измерения импульса, и обратно. С этой т. зр. соотношения неопределенностей по сути дела являются соотношениями неточностей измерения. Именно вследствие этой (принципиальной) неточности любые предсказания теории носят вероятностный характер; при этом вероятность понимается как следствие принципиальной неполноты сведений о движении М. Отсюда было сделано заключение о крушении принципа причинности в старом его понимании, поскольку наука не в состоянии предсказать точные значения динамич. характеристик М. С этой т. зр. волновая функция рассматривается как «запись сведений» о вероятных проявлениях М.
Дальнейшее развитие этих идей (гл. обр. Н. Бором) известно под названием копенгагенской трактовки квантовой механики. В качестве осн. положения квантовой механики эта трактовка принимает принцип дополнительности (см. Дополнительности принцип), к-рый рассматривается как универсальный принцип познания. На первый план выдвигается идея, что теория движения М. вынуждена принимать в качестве исходных параметров классич. величины, измеряемые (на выходе экспериментального устройства) макроприборами. Атомизм действия приводит к невозможности пользоваться одновременно двумя классами приборов — измерителями координаты и измерителями импульса. Отсюда получается соотношение неопределенностей и, как следствие, необходимость вероятностного описания состояния М. Согласно этой трактовке, квантовая теория вынуждена описывать состояние М. классич. величинами — координатой и импульсом (и их функциями). Приписывать эти величины самой М. не имеет смысла, ибо они создаются в процессе измерения, т. е. взаимодействия М. с макроприбором того или иного класса. Однако специфическая связь этих величин, обнаруживаемая квантовой механикой и характерная для данного состояния М., напр., опред. закон распределения возможных значений координаты или другой динамич. величины, дает объективную картину состояния М.
Трактовка квантовой механики, к-рая была дана копенгагенской школой, представляла собой отказ от создания классич. модели М.; именно в отказе от представления о движении М. по орбите, к-рое считалось естественным и неизбежным, и заключается глубокий рациональный смысл начала принципиальной наблюдаемости. Это «начало» выдвигалось Гейзенбергом в качестве принципа познания и в дальнейшем (в 1943) в его критике квантовой теории поля, когда он предложил отказаться от попыток детальной характеристики процессов столкновения (взаимодействия) М., заменив ее т.н. матрицей рассеяния, связывающей между собой параметры состояния М.
МИКРОЧАСТИЦЫ 437
до столкновения и после него. Гейзенберг руководствовался при этом идеей, что при сильных столкновениях взаимодействие частиц вообще не может быть выражено в функции от расстояния между ними; он предполагал, что существует минимальная четырехмерная «длина», в пределах к-рой понятие расстояния вообще лишается смысла. Хотя квант «длины» пока не обнаружен, но возможность его существования вероятна (подробнее см. Пространство и время).
Принцип дополнительности также содержит важную и правильную идею о возможности отражения динамич. свойств М. только через совокупность противоположных понятий. Большое значение имел анализ процесса измерения в квантовой теории, данный Бором, к-рый убедительно показал невозможность возврата к классич. представлениям.
Однако поскольку в изложенной трактовке квантовая теория рассматривается как специфич. форма познания свойств М. с помощью макроприборов, вопрос о природе М., о присущих ей объективных свойствах затушевывался, а в нек-рых ранних работах даже объявлялся несущественным. Характерным в этой связи является высказывание Гейзен-берга в его ранней монографии по квантовой механике (1930). Гейзенберг писал, что поскольку координата М. и ее импульс порознь измеримы сколь угодно точно, можно представлять себе, что до измерения М. двигалась по траектории; тем не менее вводить понятие траектории в физику неправомерно, т. к. мы принципиально не можем ее измерить (см. «Физические принципы квантовой теории», М., 1932, с. 21).
Отсюда следует, что науч. знание не относится к самой М., как к объекту исследования; микрообъект выступает в неразрывной связи с прибором, или, по словам Гейзенберга, с изучающим его субъектом. Понятие физич. реальности оказывается, по Гей-зенбергу, отличным от объективной реальности самой по себе, ибо физич. реальностью является неМ., а лишь совокупность ее возможных проявлений. Гейзенберг признает объективный характер тех закономерностей М., к-рые открывает квантовая механика, но вместе с тем он подчеркивает, что объективные знания о М. мы получаем только с помощью неадекватных характеристик М.
Из этих высказываний были сделаны позитивистские выводы, к-рые получили в 30 — 40-х гг. широкое распространение в зарубежной филос. литературе. Начало принципиальной наблюдаемости было истолковано сторонниками позитивизма в том смысле, что физич. теория вообще должна содержать только «принципиально наблюдаемые», измеримые величины. Из статистич. характера квантовой теории делалось заключение об индетерминизме явлений микромира. Принцип дополнительности был истолкован в духе one рационализма и объявлен основным теоретико-познавательным принципом любой науки.
Позитивистские взгляды в квантовой механике подверглись всестороннех! критике со стороны ряда философов и физиков как в СССР, так и за рубежом, к-рая вскрыла несостоятельность этих взглядов. Было показано, что начало принципиальной наблюдаемости само по себе без положит, программы, не позволяет решить заранее, до создания теории, наблюдаема ли данная величина или нет. Более того, в самой квантовой теории содержатся заведомо ненаблюдаемые величины и объекты, напр. виртуальные частицы: наблюдаемы лишь реальные частицы, однако понятие виртуальной частицы существенно необходимо для этой теории; число таких «ненаблюдаемых» величин все время возрастает.
Несостоятельны рассуждения о принципиально неполной контролируемости взаимодействия прибора с М. Неправомерно ставить вопрос о неконтролируемости величин, к-рых не существует в природе. В частности, координата и импульс М. не измеримы одновременно не потому, что взаимодействие М. с прибором не контролируемо, а потому, что М. объективно одновременно не обладает точными значениями этих величин в силу своей двойств, природы.
Неверно утверждение об индетерминироваиности явлений микромира, ибо причинность отнюдь не сводится к возможности однозначно предсказывать координату и импульс М.; необходимая и однозначная связь между изменением состояний во времени и взаимодействием, содержащаяся в уравнении Шрёдин-гера, и выражает причинную зависимость в микромире.
Наконец, и принцип дополнительности явился следствием и развитием соотношений неопределенностей, выражающих двойств, природу М.; сами же эти соотношения выражают не «предел познания», а напротив, вскрывают новые связи между координатными и импульсно-энергетич. характеристиками М.
Было подвергнуто критике утверждение, что динамические характеристики М. представляют собой макроскопические величины, приписываемые М. В действительности величины, характеризующие состояние М., являются объективными ее характеристиками. В самом деле, нелокализованный свободный электрон, не связанный с какой-либо определенной системой, обладает опродел. значением импульса вовсе не потому, что этот импульс измерен прибором, а до измерения. В противном случае было бы непонятно, почему эта величина сохраняется при любых взаимодействиях М.; ведь импульс является существ, мерой движения именно потому, что он подчиняется закону сохранения. Следовательно, импульс нельзя рассматривать только как классич. величину, создаваемую макроприбором. Столь же неправомерно утверждать, будто локализация электрона, находящегося в состоянии сильного столкновения с к.-л. массивной частицей, создана изморит, прибором, косвенно регистрирующим последствия этой локализации. Координата является объективной характеристикой состояния самой М. в определ. условиях, к-рая лишь регистрируется макроприбором, а отнюдь не создается им. Конечно, понятие координаты М. сложнее, чем аналогичное понятие в классич. физике. Во-первых, потому, что определ. локализация М. создается при взаимодействии М.; во-вторых, вследствие двойств, природы М. точечная ее локализация требует бесконечно большой энергии, что делает иллюзорной саму точечность, ибо при этом может произойти размножение М. Следовательно, понятие координаты М. имеет свою специфику, но она вовсе не создается только в процессе измерения макроприбором.
Было подвергнуто анализу понятие прибора п показано (В. А. Фок и др.), что следует различать те части макроприбора, к-рые играют роль макроусловий, и регистрирующую часть прибора. Напр., в опыте по дифракции электронов часть устройства, где «приготовляется» электронный пучок, и дифракционная решетка создают условия, определяющие состояние электрона. Экран же или фотопластинка только регистрируют места попадания дифрагированных электронов. Первые две части устройства ничем не отличаются от аналогичных естеств. объектов (напр., тонкой кристаллич. пленки, через к-рую пролетает никем не «измеряемый» электрон).
В последние годы происходит отход ряда физиков от нек-рых неправильных представлений. Напр., в
438 МИКРОЧАСТИЦЫ
своих последних работах Бор уже не говорил о частичной неконтролируемости, об акаузальности и т. п. (см. его статью в «Вопросах философии», № 8, 1964). В последних работах Гейзенберга также содержатся критич. высказывания по адресу позитивизма. В своей книге «Физика и философия» он пишет, что «...объективность является высшим критерием ценности научных открытий» и «...квантовая теория соответствует этому идеалу» (указ. соч., М., 1963, с. 34). Специфика квантовой теории, по Гейзенбергу, состоит в том, что выделение М. из окружающего мира (к-рый описывается классич. понятиями) неоднозначно. Способ выделения М. оказывается различным при измерении ее импульса или координаты; отсюда получается дополни-тельность.Т. о., исходным фактом для квантовой теории является относит, индивидуальность микрообъекта.
Т. о., тот факт, что онредел. состояние электрона существует не само по себе, а зависит от фиксированных условий, в к-рых он движется (в частности, осуществляемые и в макроприборе), был истолкован на «приборном языке». Разумеется, само по себе применение «приборного языка» еще не означает позитивистского истолкования квантовой теории. Но этот язык не безразличен для содержания, ибо все богатство содержания квантового понятия М. при этом выступает односторонне: взаимосвязь динамич. характеристик М. предстает как их внешняя дополнительность друг другу, тождественность одинаковых М.— как их «неразличимость» и т. п. Объективное развитие квантовой теории показало недостаточность такого истолкования.
Проблема полноты квантовой теории и дискуссии о ее перспективах. Дискуссия между различными направлениями в связи с истолкованием осн. положений квантовой теории привлекла внимание к проблеме — можно ли вообще считать ее полной теорией движения М. Этот вопрос был впервые поставлен Эйнштейном в 20-х гг. Осн. мысль Эйнштейна заключается в том, ^что квантовую механику по самой постановке задач следует рассматривать как статистич. теорию, исследующую закономерности, к-рые относятся только к ансамблю М., но не к отд. М. По мнению Эйнштейна, каждая М. в действительности обладает одновременно опред. значениями и импульса и координаты, т. е. является всегда строго локализованным объектом. Постановка же задачи квантовой механики такова, что она не в состоянии точно определить значения этих величин; в этом отношении квантовая механика не отличается от классич. статистики. Эйнштейн неоднократно пытался доказать, что соотношения неопределенностей должны рассматриваться как следствие неполноты квантовой механики. Рассмотрим, напр., альфа-радиоактивный атом. Согласно квантовой механике, время его распада неопределенно; однако вылет альфа-частицы с определ. энергией, говорит Эйнштейн, происходит в определ. момент времени и этот момент можно было бы измерить, напр., счетчиком частиц. Значит, все дело в том, что мы пока не умеем одновременно измерять изменение энергии М. и момент этого изменения, поэтому мы не в состоянии его заранее предсказать. Др. словами, существуют скрытые параметры, но пока неизвестные. Поэтому квантовая механика, по мнению Эйнштейна, является существенно неполной теорией движения М. Для подтверждения этих взглядов Эйнштейн пытался доказать, что описание данного состояния М. при помощи опоедел. волновой, функции является неполным.
Воззрения Эйнштейна были подвергнуты критике (Н. Бор и др.). Анализируя мысленные опыты, предложенные Эйнштейном, Бор показал, что в действительности возражения Эйнштейна неосновательны. Напр., в случае вылета а-частицы из радиоактивного
ядра принципиально не существует устройств, к-рые точно определили бы и момент вылета а-частицы, и ее энергию в этот момент. По сути дела, взгляды Эйнштейна основаны на отрицании возможности существования объективно неопределенных величин. Но если принять, что М. обладает только определ. динамич. характеристиками, подобно классич. частице, то присущие М. волновые черты оказываются загадкой. Если М.—локальное образование, при всех условиях имеющее центр масс, движущихся по определ. траектории, то туннельный эффект — просачивание М. через потенциальный барьер при условии сохранения ее целостности — вступает в противоречие с законом сохранения энергии. На самом деле М. не является резко отграниченным индивидуумом, и ее динамич. параметры зависят от фиксированных условий ее существования. Именно объективная неопределенность динамич. характеристик М. является причиной статистичности квантовой теории, а отнюдь не «полузнание» этих параметров.
В дискуссии высказывались различные соображения о причинах статистичности. Указывалось, в частности, что вероятностный характер закономерностей М. обусловлен тем, что характеристики поля, влияющего на движение М. (потенциал поля), являются осредненными, и, следовательно, не учитываются флуктуации поля, к-рые и создают разброс значений динамич. параметров М. Эти соображения, по-видимому, являются недостаточными. Необходимо учесть и др. сторону, именно, волновые свойства М., сущность к-рых еще полностью не раскрыта. Исходя из сказанного, нельзя согласиться с Эйнштейном, что задача будущей теории М. заключается в точном предсказании координаты и импульса М. Двойств, природа М., относительность ее индивидуальности исключают такую постановку задачи. Поэтому возврат к классич. представлениям о движении и взаимодействии М. в процессе дальнейшего развития теории невозможен.
Разумеется, существует возможность создания физической теории, к-рая будет изучать совершенно новый круг явлений, лежащих на более глубоком уровне материи и характеризующихся вообще иными параметрами. Но пока нет никаких экспериментальных фактов, подводящих к этому кругу проблем.
Спор о дальнейших путях развития квантовой механики вступил в новую стадию в начале 50-х гг. в связи с противоречиями квантовой теории поля, с одной стороны, и обострением филос. дискуссии, с другой. В начале 50-х гг. появились работы Д. Бома, снова обратившегося к представлениям волны-пилота, высказанным де Бройлем. Бом рассматривает пси-волну как реальное поле, связанное с М. и действующее на нее наряду с обычным полем, напр. электромагнитным; Бом называет пси-функцию квантово-меха-нич. потенциалом. Бом предполагает^ что в очень малых областях вблизи частицы (10-13си) закономерности пси-поля могут отличаться от известных.
Идеи Бома были встречены .критически не только сторонниками 'копенгагенской школы, но и рядом ее противников. 'Дело в том, нто у Бома волна и частица лишь внешним образом связаны друг с другом. С одной стороны, пси-поле действует на электрон с опред. силой, с другой — пси-поле, в отличие от других полей, не излучается. Отрываясь от электрона (напр., при разделении волнового пакета на несколько пакетов, движущихся в разных направлениях), пси-поле бесследно исчезает, не унося с собой энергии • и импульса. Нет смысла указывать на другие противоречия и недостатки концепции волны-пилота,
Работы Бома послужили толчком к возрождению более последоват, концепции «двойного решения»,
МИКРОЧАСТИЦЫ — МИЛЕТСКАЯ ШКОЛА 439
в свое время также выдвинутой де Бройлем. Здесь частица рассматривается как особое место — т.н. «сингулярность» пси-волны, характеризующаяся тем, что в области, занимаемой ею, действуют нелинейные закономерности. Др. словами, частица представляется как особое образование, возникающее в самом пси-поле, как «релятивистская капля», движущаяся в сплошной среде, но сохраняющая вместе с тем свою индивидуальность. Сотрудник де Б рой ля П. Вижье выполнил ряд исследований, в к-рых поставил себе целью синтезировать идеи квантовой механики и общей теории относительности. Работы физиков этого направления имеют целью не только дать новое толкование теории движения М., но и создать более рациональную теорию их превращения. Однако в этом направлении достигнуты лишь отд. результаты. Осн. недостаток этого направления, по-видимому, заключается в том, что здесь сохраняется слишком большая степень индивидуальности М. Поэтому можно сказать, что воззрения физиков этого направления слишком «классичны». К этому направлению примыкают и работы Л. Яноши, однако его представления менее «модельны».
В 50-х гг. в центре филос. дискуссии стал вопрос о природе элементарных частиц. Долгое время они рассматривались многими физиками как бесструктурные точечные объекты. Эта идея была подвергнута критике сторонниками диалектич. материализма. Объективный процесс развития квантовой теории (в частности, и методов матрицы рассеяния) показал, что понятие бесструктурной частицы бессодержательно, что элементарные частицы обладают структурой и образуют единую систему. Совр. теория элементарных частиц приняла эту точку зрения.
Анализ филос. исследований, связанных с проблемами М., показывает, что они имеют важное значение не только для уяснения более далеких перспектив теории М., но и для решения принципиальных вопросов совр. квантовой физики. Сюда относится, прежде всего, вопрос о сущности элементарной частицы.
Заслуга философии диалектич. материализма заключается в том, что она вскрыла сущность тех глубоких преобразований, к-рые испытали за последние нолвека науч. представления о простейших формах материи, их движении и взаимодействии. Была доказана несостоятельность субъективистского понимания теории М. Однако недостаточная разработанность ряда филос. понятий привела к тому, что роль науч. философии в развитии физики М. оказалась недостаточно эффективной.
Нет сомнения, что позитивистские взгляды на законы движения и превращения М. сыграли отрицат. роль в развитии квантовой теории. Убеждение, что квантовая теория ведет не к раскрытию сущности микроявлений, а к границе познания, обусловленной относительностью разделения на объект и субъект и связанной с этим произвольностью понятий, входящих в теорию М., и отказ от создания единого образа М. замедлили развитие и теории элементарных частиц и ряда др. разделов физики. Объективный ход развития физики опровергает позитивистские концепции и вынуждает их сторонников к отказу от них.
На совр. этапе осн. филос. исследования направлены на дальнейшую разработку таких понятий, как понятия частицы, системы, структуры, движения, превращения, взаимодействия, формирующихся на основе теории М.