Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Произведение событий и условная вероятность



Определение 1. Произведением двух событий А и В называ­ется событие АВ, означающее совместное появление этих со­бытий (см. гл. 1.1, произведение множеств).

Например, если событие А — шар, событие В — белый цвет, то их произведение АВ — белый шар. Аналогично опре­деляется произведение нескольких событий, как совместное по­явление их всех.

Если при вычислении вероятности события никаких дру­гих ограничений кроме необходимого комплекса условий S не налагается, то такая вероятность называется безусловной. Ес­ли же налагаются другие дополнительные условия, содержа­щие случайные события, то вероятность такого события назы­вается условной.

Определение 2. Вероятность события В в предположении о наличии события А называют условной вероятностью РA(В).

Пример 1. В ящике лежит 11 деталей, 3 из них нестандарт­ные. Из ящика дважды берут по одной детали, не возвращая их обратно. Найти вероятность того, что во второй раз из ящика будет извлечена стандартная деталь — событие В, если в пер­вый раз была извлечена нестандартная деталь — событие А.

Решение. После первого извлечения в ящике из 10 дета­лей осталось 8 стандартных, и, следовательно, искомая веро­ятность

 

 

Пусть теперь известны вероятность Р(А) события А и условная вероятность РА(В) события В. Тогда справедлива следующая теорема.

ТЕОРЕМА 3. Вероятность произведения двух событий определяется формулой

 

Пример 2. В условиях примера 1 найти вероятности того, что в первый раз извлечена нестандартная деталь, а во второй раз — стандартная, и наоборот.

Решение. Итак, событие А — это извлечение из ящика не­стандартной детали, а событие В — стандартной. Тогда воз­можны два случая. 1) Вероятность Р(А) = 3/11, а условная вероятность РA(В) = 0,8. Искомая вероятность произведения этих событий (их совместного появления в указанном порядке) равна, согласно теореме 17.3,

 

 

2) Вероятность Р(В) = 8/11, а условная вероятность РB(А) = 0,3. Мы видим, что и в этом случае вероятность произведе­ния событий Р(ВА) = Р(В)РB(А) ≈ 0,22.

В этом примере мы проверили известное в теории равен­ство

 

 

Теорема 17.3 допускает обобщение на случай произведения любого числа событий A1, А2, А3, ..., An:

 

т.е. вероятность совместного появления п событий равна про­изведению п вероятностей, где PA1A2...Ak-1(Ak) — условные ве­роятности событий Ak в предположении, что события A1A2 ... Ak-1 уже произошли (k = 1, 2, ... , п).

Пример 3. В урне находится 4 белых шара, 5 красных и 3 синих. Наудачу извлекают по одному шару, не возвращая его обратно. Найти вероятность того, что в первый раз появится белый шар (событие А), во второй раз — красный (событие В), в третий — синий (событие С).

Решение. Вероятность появления белого шара в первом извлечении Р(А) = 1/3; условная вероятность появления крас­ного шара во втором извлечении при условии появления в пер­вый раз белого шара РA(В) = 5/11; условная вероятность по­явления синего шара в третьем извлечении при условиях по­явления в предыдущих извлечениях белого и красного шаров РAB(С) = 0,3. Искомая вероятность определяется по формуле (17.6) при п = 3:

 

Независимые события

Определение 3. Событие В называется независимым от со­бытия А, если условная вероятность события В равна его без­условной вероятности (появление события А не влияет на ве­роятность события В):

 

 

Отсюда следует, что и событие А также независимо от со­бытия В:

 

 

Для независимых событий теорема умножения вероятностей 17.3 в общей форме, которая следует из (17.6), имеет вид

 

 

Равенство (17.7) принимается за определение независимых со­бытий. При этом если события независимы, то независимы также и соответствующие им противоположные события.

Пример 4. Найти вероятность поражения цели при совмест­ной стрельбе тремя орудиями, если вероятности поражения цели орудиями соответственно равны 0,9, 0,8 и 0,7 (события А, B и С).

Решение. Поскольку события А, В и С являются независимыми, то искомая вероятность вычисляется, согласно формуле (17.7), при n = 3:

 

 

Когда в результате испытания может иметь место n неза­висимых событий с известными вероятностями их появления, особый интерес представляет случай нахождения вероятнос­ти наступления хотя бы одного из них (например, в случае трех событий найти вероятность наступления либо одного, ли­бо двух, либо трех событий). Обозначим это событие через А. Справедлива следующая теорема.

ТЕОРЕМА 4. Вероятность появления хотя бы одного из не­зависимых событий А1, A2, ... , Аn определяется формулой

 

 

где qi = 1 — pi — вероятности соответствующих противо­положных событий i (i = 1, 2,... , n).

В частном случае, когда все события Аi имеют одинаковую вероятность р, из формулы (17.8) следует, что

 

Пример 5. В условиях примера 4 найти вероятность пораже­ния цели (хотя бы одного попадания) при залповой стрельбе орудий.

Решение. Вероятности противоположных событий (про­махов) соответственно равны q1 = 0,1, q2 = 0,2, q3 = 0,3. Иско­мая вероятность находится по формуле (17.8) при п = 3:

 

 

Из этого примера наглядно видно преимущество совместного воздействия случайных событий с целью достижения общего результата.

Пример 6. На перевозку груза направлены 4 автомобиля. Ве­роятность нахождения каждой из машин в исправном состоя­нии равна 0,8. Найти вероятность того, что в работе участвует хотя бы один из выделенных для этого автомобилей.

Решение. Вероятность противоположного события (маши­на неисправна) равна q = 1 - 0,8 = 0,2. По формуле (17.9) находим искомую вероятность при n = 4:

 

Пример 7. Вероятность обслуживания клиента одним опера­ционистом в банке равна 0,6. Какое минимальное число опе­рационистов должно работать в банке, чтобы вероятность об­служивания клиента была не менее 0,95?

Решение. Вероятность противоположного события (отказ в обслуживании клиента операционистом) равна 0,4. Пусть n — количество операционистов, удовлетворяющее условию за­дачи, т.е.

 

 

Решая это неравенство, получаем

 

 

Логарифмирование обеих частей этого неравенства дает

 

 

Поскольку n должно быть целым числом, окончательно получаем, что в банке должны работать не менее 4 операцио­нистов.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.