Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Часть 2. ЭЛЕМЕНТЫ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ



 

Дифференциальные уравнения занимают особое место в ма­тематике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построе­нию математических моделей, основой которых являются диф­ференциальные уравнения.

В дифференциальных уравнениях неизвестная функция со­держится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функ­ций, представляющих собой решения этих уравнений.

В этой части излагаются элементы теории обыкновенных дифференциальных уравнений, когда неизвестные функции за­висят от одной переменной. Теория дифференциальных урав­нений, когда неизвестные функции зависят от нескольких пере­менных — уравнения в частных производных, является более сложной и представляет специальный раздел математики.

 

Глава 9. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Основные понятия

Базовые определения

Определение 1. Уравнение вида

 

 

где х — независимая переменная, у и у' — соответственно не­известная функция и ее производная, называется дифференци­альным уравнением первого порядка.

Примеры дифференциальных уравнений первого порядка:

 

 

В случае когда из уравнения можно выразить у', оно имеет вид

 

 

Уравнение (9.1) называется уравнением первого порядка, раз­решенным относительно производной. В дальнейшем будем рассматривать уравнения первого порядка именно такого ви­да. Примеры уравнений, разрешенных относительно производ­ной:

 

 

Приведем примеры уравнений, которые можно разрешить относительно производной неизвестной функции у'.

Пример 1. (y')2 = x2 + у2, откуда получаем два уравнения первого порядка у' = ± .

 

Определение 2. Решением дифференциального уравнения первого порядка называется функция у = φ(x), определенная на некотором интервале (а, b), которая при подстановке в урав­нение обращает его в тождество.

Например, функция у = х2 тождественно обращает в нуль левую часть уравнения ху' — 2х2 = 0 и потому представляет собой решение этого уравнения.

В теории дифференциальных уравнений основной задачей является вопрос о существовании и единственности решения. Ответ на него дает теорема Коши, которую мы приводим без доказательства.

ТЕОРЕМА 1. Пусть дано дифференциальное уравнение (9.1). Если функция f(x,y) и ее частная производная f'y(x,y) непре­рывны в некоторой области D плоскости Оху, то в неко­торой окрестности любой внутренней точки (x0, у0) этой области существует единственное решение уравнения (9.1), удовлетворяющее условию у = у0 при х = x0.

 

График решения дифференциального уравнения называет­ся интегральной кривой. В области D содержится бесконечно много интегральных кривых. Теорема Коши гарантирует, что при соблюдении определенных условий через каждую внутрен­нюю точку области D проходит только одна интегральная кри­вая. Условия, которые задают значение функции у0 в фиксиро­ванной точке x0, называют начальными условиями (условиями Коши) и записывают в такой форме:

 

 

Задача нахождения решения уравнения (9.1), удовлетворя­ющего условию (9.2), называется задачей Коши — из множес­тва интегральных кривых выделяется та, которая проходит через заданную точку (x0, y0) области D.

В ряде случаев, когда условия теоремы Коши не выполне­ны, через некоторые точки плоскости Оху либо не проходит ни одной интегральной кривой, либо проходит более одной ин­тегральной кривой; эти точки называются особыми точками данного дифференциального уравнения.

Определение 3. Общим решением уравнения (9.1) называет­ся функция у = φ(x, С), удовлетворяющая этому уравнению при произвольном значении постоянной С.

Определение 4. Частным решением уравнения (9.1) в облас­ти D называется функция у = φ(х,С0), полученная при опре­деленном значении постоянной С = С0.

Общее решение у = φ(x, С) описывает семейство интег­ральных кривых на плоскости Оху. Условия Коши (9.2) фик­сируют произвольную постоянную С и позволяют выбрать из семейства интегральных кривых уравнения (9.1) одну интег­ральную кривую у = φ(x,C0), проходящую через заданную точку (x0, y0).

Например, рассмотрим уравнение у' = 2х. Правая часть этого уравнения удовлетворяет условиям теоремы Коши во всех точках плоскости Оху (функции f(x, у) = 2х и f'y(x, у) 0 определены и непрерывны на всей плоскости Оху). Нетруд­но видеть, что общим решением уравнения является функция у = х2 + С, где С — произвольная постоянная, описывающая семейство парабол (рис. 9.1). Для отыскания частного решения зададим произвольные начальные условия (9.2) и подставим их в формулу общего решения; получаем, что С = у0 — x02, откуда находим частное решение у = х2 + у0 – х02. Это частное решение выделяет из семейства парабол одну, проходящую через точку 0, у0).

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.