Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Выбор и обоснование технических средств



При выборе электронной вычислительной машины (ЭВМ) необходимо руководствоваться рядом характеристик. К таким характеристикам относятся надежность, стоимостные затраты, производительность, простота использования и др. От значения указанных параметров зависит возможность работы с требуемыми программными средствами, а следовательно, и успех создания системы.

Сейчас на рынке существуют несколько классов ЭВМ: персональные компьютеры (ПК) и рабочие станции, серверы, мейнфреймы и кластерные архитектуры.

Класс ПК рабочих станций. Этот класс ПК из-за своей низкой стоимости очень быстро завоевали хорошие позиции на компьютерном рынке и создали предпосылки для разработки новых программных средств, ориентированных на конечного пользователя. Это прежде всего- «дружественные пользовательские интерфейсы», а также проблемно-ориентированные среды и инструментальные средства для автоматизации разработки прикладных программ.

Применение ПК стало более разнообразным. Помимо обычных для этого класса систем текстовых процессоров, даже средний пользователь ПК может теперь работать сразу с несколькими прикладными пакетами, включая электронные таблицы, базы данных и высококачественную графику. Адаптация графических пользовательских интерфейсов существенно увеличила требования пользователей ПК к соотношению производительность/стоимость. Широкое распространение систем мультимедиа прямо зависит от возможности использования высокопроизводительных ПК и рабочих станций с адекватными аудио - и графическими средствами, и объемами оперативной и внешней памяти.

Класс серверов. Прикладные многопользовательские коммерческие и бизнес-системы, включающие системы управления базами данных и обработки транзакций, крупные издательские системы, сетевые приложения и системы обслуживания коммуникаций, разработку программного обеспечения и обработку изображений все более настойчиво требуют перехода к модели вычислений «клиент-сервер» и распределенной обработке. В распределенной модели «клиент-сервер» часть работы выполняет сервер, а часть пользовательский компьютер (в общем случае клиентская и пользовательская части могут работать и на одном компьютере). Существует несколько типов серверов, ориентированных на разные применения: файл-сервер, сервер базы данных, принт-сервер, вычислительный сервер, сервер приложений. Таким образом, тип сервера определяется видом ресурса, которым он владеет (файловая система, база данных, принтеры, процессоры или прикладные пакеты программ).

С другой стороны, существует классификация серверов, определяющаяся масштабом сети, в которой они используются: сервер рабочей группы, сервер отдела или сервер масштаба предприятия (корпоративный сервер). Эта классификация весьма условна. Например, размер группы может меняться в диапазоне от нескольких человек до нескольких сотен человек, а сервер отдела может обслуживать от 20 до 150 пользователей. Очевидно, в зависимости от числа пользователей и характера решаемых ими задач требования к составу оборудования и программного обеспечения сервера, к его надежности и производительности сильно варьируются.

По уровню общесистемной производительности, функциональным возможностям отдельных компонентов, отказоустойчивости, а также в поддержке многопроцессорной обработки, системного администрирования и дисковых массивов большой емкости суперсерверы вышли в настоящее время на один уровень с мейнфреймами. Суперсерверы должны иметь достаточные возможности наращивания дискового пространства и вычислительной мощности, средства обеспечения надежности хранения данных и защиты от несанкционированного доступа. Кроме того, в условиях быстро растущей организации, важным условием является возможность наращивания и расширения уже существующей системы.

Класс мейнфреймов. Мейнфрейм- это синоним понятия «большая универсальная ЭВМ». Мейнфреймы и до сегодняшнего Дня остаются наиболее мощными (не считая суперкомпьютеров) вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. Они могут включать один или несколько процессоров, каждый из которых, в свою очередь, может оснащаться векторными сопроцессорами (ускорителями операций с суперкомпьютерной производительностью). В нашем сознании мейнфреймы все еще ассоциируются с большими по габаритам машинами, требующими специально оборудованных помещений с системами водяного охлаждения и кондиционирования. Однако это не совсем так. Прогресс в области элементно-конструкторской базы позволил существенно сократить габариты основных устройств.

В архитектурном плане мейнфреймы представляют собой многопроцессорные системы, содержащие один или несколько центральных и периферийных процессоров с общей памятью, связанных между собой высокоскоростными магистралями передачи данных. При этом основная вычислительная нагрузка ложится на центральные процессоры, а периферийные процессоры обеспечивают работу с широкой номенклатурой периферийных устройств.

Главным недостатком мейнфреймов в настоящее время остается относительно низкое соотношение производительность/стоимость.

Класс кластерных архитектур. Двумя основными проблемами построения вычислительных систем для критически важных приложений, связанных с обработкой транзакций, управлением базами данных и обслуживанием телекоммуникаций, являются обеспечение высокой производительности и продолжительного функционирования систем.

Наиболее эффективный способ достижения заданного уровня производительности - применение параллельных масштабируемых архитектур. Задача обеспечения продолжительного функционирования системы три составляющих: надежность, готовность и удобство обслуживания. Все эти три составляющие предполагают, в первую очередь, борьбу с неисправностями системы, порождаемыми отказами и сбоями в ее работе. Эта борьба ведется по всем трем направлениям, которые взаимосвязаны и применяются совместно.

Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратуры. Повышение уровня готовности предполагает подавление в определенных пределах влияния отказов и сбоев на работу системы с помощью средств контроля и коррекции ошибок, а также средств автоматического восстановления вычислительного процесса после проявления неисправности, включая аппаратную и программную избыточность, на основе которой реализуются различные варианты отказоустойчивых архитектур. Повышение готовности есть способ борьбы за снижение времени простоя системы.

Работа любой кластерной системы определяется двумя главными компонентами: высокоскоростным механизмом связи процессоров между собой и системным программным обеспечением, которое обеспечивает клиентам прозрачный доступ к системному сервису.

Рассмотрев и сравнив вышеперечисленные классы ЭВМ мы с полной уверенность можем исключить применение ЭВМ класса мейнфреймов и кластерной архитектуры для решения поставленной задачи, так как, во – первых, нам не нужны те мощности, которые реализуют на ЭВМ данных классов, во – вторых, затрат на покупку и обслуживание этих ЭВМ будут несоизмеримо велики по сравнению с положительным эффектом, полученным от их использования.

По способу распределения вычислительных ресурсов выделяют локальные и распределительные ЭИС. Локальная система использует одну ЭВМ, а в распределенной система организуется взаимодействие нескольких ЭВМ, соединенных между собой каналами связи. Распределенная ЭИС – это объединение информационных систем, выполняющих собственные, не зависимые друг от друга функции, с целью коллективного использования информационных фондов и вычислительных ресурсов этих систем.

Поскольку предполагается дальнейшее объединение в единую ИС данного комплекса задач с автоматизированными вариантами других задач, то при выборе ПЭВМ я остановилась на классе ПК и рабочих станций.

На основании широкого применения этих компьютеров в практике и, следовательно, относительной дешевизны, был сделан выбор в пользу ПЭВМ типа IBM PC и совместимых с ними. ПЭВМ этого класса обладает всеми необходимыми возможностями для эффективного решения задачи.

К основным достоинствам этих ПЭВМ, оказавшим решающее влияние на окончательный выбор, относятся:

- низкая стоимость компьютеров по сравнению с ЭВМ других классов;

- простота использования, обеспеченная диалоговым взаимодействием с компьютером и широким использованием эти компьютеров, что предполагает возможность быстрого освоения ЭВМ;

- относительно высокие возможности по переработке информации;

- относительно высокая надежность и простота ремонта, основанные на интеграции компонентов компьютера;

- возможность оснащения компьютера разными периферийными устройствами и программным обеспечением.

В итоге для работы АИС был выбран компьютер на базе IBM PC со следующей конфигурацией:

 

Процессор: Intel Pentium III

Жесткий диск: 20 Gb

ОЗУ: 256 Mb

Монитор: 15’

Принтер: HP LaserJet 1100

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.