Синтез затравок РНК в процессе образования фрагментов Оказаки при репликации ДНК (преимущественно в отстающей нити) катализируется праймазами – особой разновидностью ДНК-зависимых РНК-полимераз, отличающейся от РНК-полимераз, которые участвуют в транскрипции. Рассмотрим их структурные особенности по сравнению с транскрипционными РНК-полимеразами на примере наиболее хорошо изученных ферментов – белка DnaG E. coli и эукариотической праймазы, всегда работающей в комплексе с ДНК-полимеразой a.
Праймаза DnaG E. coli кодируется существенным геном dnaG (67-ая мин генетической карты) и имеет длину 582 остатка. Она почти не гомологична известным РНК-полимеразам (единственный участок гомологии RNAP имеет длину всего 15 остатков), но содержит 6 участков гомологии (1-6) с праймазами других бактерий и некоторых фагов. Эти участки гомологии сосредоточены в N-концевых 2/3 молекулы DnaG. За положением 400 гомология бактериальных и фаговыйх праймаз исчезает: эта С-концевая область у фаговых праймаз либо отсутствует, либо заменена на геликазный домен у праймаз-геликаз фагов Т7 и Р1. В первичной последовательности белка DnaG можно выделить 4 важные области (I-IV, рис 2.18).
N-концевая область I c консервативным мотивом 1 содержит мотив цинкового пальца или ленты (положения 40-65) типа СХ2НХ17СХ2С с длинной центральной петлей и координационно связывает катион Zn2+. Эта область участвует в узнавании онДНК и связывании с нею и может частично определять положение стартовой точки синтеза РНК. Главным является центральный домен II (остатки 200-350), содержащий 4 из 6 консервативных праймазных мотивов и участок гомологии с РНК-полимеразами. В этой области сосредоточены 3 необходимых для катализа кислых остатка (асп269 в мотиве 4 и диада DXD в положениях 345-347 мотива 6), связывающие ионы Mg2+, и входящий в активный центр остаток лиз241, замена которого не мешает инициации затравок РНК, но препятствует их элонгации.
1 100 200 300 400 500 582
N I II III IV C
1 2 3 4 5 6
RNAP Toprim
Рис. 2.18. Доменная организация праймазы DnaG E. coli.
I – домен связывания с ДНК, II – центральный каталитический домен, III - линкерный домен, IV – домен взаимодействия с другими белками.
1-6 – консервативные участки бактериальных и фаговых праймаз, RNAP – участок гомологии с РНК-полимеразами, Toprim - область гомологии с ДНК-топоизомеразами
Рентеноструктурный анализ белка DnaG не обнаружил структурного сходства с известными РНК-полимеразами, но подтвердил основанную на первичной последовательности гомологию праймазы с ДНК-топоизомеразами. Центральная часть каталитического домена DnaG имеет укладку типа Toprim, характерную для топоизомераз классов 1 и 2 (см. 2.5). Этот домен имеет форму гребня и содержит центральную b-слой, окруженную несколькими a-спиралями (рис. 2.19). На вершине этой структуры находятся остатки асп, связывающие Mg2+ и необходимые для катализа. Впадина домена Toprim может слабо связывать дуплекс ДНК-РНК длиной 10 п.н. В этом канале расположен и остаток лиз241 из сегмента RNAP гомологии с РНК-полимеразами. Домен II через гибкий линкерный домен III в области остатка 400 соединен с уникальным для бактериальных праймаз С-концевым доменом IV. Последний участвует во взаимодействиях белка DnaG с другими компонентами аппарата репликации. В частности, последние 16 С-концевых остатков DnaG необходимы для взаимодействия с N-концевым доменом ДНК-геликазы DnaВ и участвуют в вербовке DnaG в репликативную вилку. Прямой физический контакт с DnaВ обеспечивает попадание расплетенной геликазой нити ДНК сразу к активному центру DnaG и стимулирует праймазную активность.
Рис. 2.19. Трехмерная структура активного фрагмента праймазы DnaG E. coli
с разрешением 2,9 Å.
Отмечены положения домена Toprim гомологии с топоизомеразами и остатков активного центра праймазы.
Эукариотические праймазы являются интегральными компонентами бифункционального фермента ДНК-полимераза a -праймаза (см. 1.00) и состоят из 2 субъединиц р55 и р48 с мол. м. 55 и 48 кД (у человека). Белки р55 и р48 образуют прочно ассоциированный комплекс, в формировании которого участвуют N- и C-концевые домены р55. Субъединица р55 имеет сигнал ядерной локализации и способна направлять субкомплекс р55-р48 в ядро независимо от полимеразного субкомплекса. Субъединица р55 участвует в ассоциации праймазного субкомплекса с главной субъединицей р180 ДНК-полимеразы a. Кроме того, белок р55 может связываться с онДНК и с дуплексом ДНК-РНК, образовавшися после синтеза праймерной РНК.
Каталитической субъединицей праймазы является белок р48, который связывается с онДНК и катализирует образование фосфодиэфирных связей в РНК. Кристаллическая структура этой субъединицы пока не установлена.Однако есть основания полагать, что белок р48 относится к тому же семейству Х нуклеотидилтрансфераз, что и ДНК-полимераза b. Гомология последовательностей праймазы р48 и ДНК-полимеразы b позволяет предположить, что праймаза имеет конформацию кисти руки и содержит в субдомене ладони каталитическую триаду остатков асп109, асп111 и асп306, связывающих Mg2+. Таким образом бактериальные и эукариотические праймазы не похожи друг на друга ни по первичной, ни по третичной структуре. Тем не менее, сохранение триад кислых остатков показывает, что молекулярный механизм каталитической стадии у этих двух типов геликаз одинаков и состоит в опосредованной 2 катионами Mg2+ нуклеофильной атаке 3’-гидроксила растущего конца РНК на фосфодиэфирную связь в рНТФ, как и в случае ДНК-полимераз и типичных РНК-полимераз.
Праймаза DnaG инициирует синтез затравок РНК преимущественно (в 60% случаев) на тринуклеотидном сайте 3’-GTC в матричной нити ДНК. В геноме E. coli имеются 205 тысяч таких сайтов на среднем расстоянии »23 н. друг от друга, чего достаточно для быстрой инициации синтеза РНК всех фрагментов Оказаки. Праймазы фагов Т7 и Т4 инициируют синтез праймерных РНК на других триплетах: 3’-T(C/T)G 3’-GTC соответственно. Различная специфичность этих праймаз частично объясняется разной структурой петли длиной 17 н. в мотиве цинкового пальца.
Первый остаток G в сайте инициации существенен только для узнавания стартового сайта белком DnaG и не используется для включения нуклеотида в РНК. Синтез праймерной РНК de novo начинается на напротив второго остатка Т. На растущем 3’-конце РНК вначале образуется динуклеотид AG. Эта стадия, как и при инициации транскрипции РНК-полимеразами, является лимитирующей скорость синтеза праймера. Последующие 10 фосфодиэфирных связей образуются гораздо быстрее, и праймаза DnaG синтезирует затравку РНК длиной 11±1 н. Этот размер примерно соответствует длине гибрида ДНК-РНК, помещающегося в полости молекулы DnaG. Затем праймаза переходит в дистрибутивную моду и синтез РНК замедляется или прекращается. Обычно это сопровождается вытеснением праймазы с матрицы ДНК, механизм которого мы рассмотрим в главе 4. Короткая затравка РНК предается к ДНК-полимеразе III, которая синтезирует ДНК фрагмента Оказаки. Для эффективного синтеза РНК праймаза DnaG нуждается в физическом контакте с ДНК-геликазой DnaВ.
Аналогично идет синтез праймерной РНК эукариотической праймазой. Однако она не требует для инициации специфических последовательностей в матрице ДНК и обычно начинает синтез напротив пиримидинов, так что на 5’-конце РНК-затравки всегда присутствует пурин. Эукариотическая праймаза в присутствии ДНК-полимеразы a также синтезирует короткие праймерные РНК с «единичной длиной», равной 7-10 н. Вместе с тем, в отсутствие ДНК-полимеразной активности эта праймаза способна элонгировать «единичные» праймеры РНК. Отметим, что бактериальные и эукариотические праймазы являются неточными полимеразами и в среднем включают один ошибочный нуклеотид на 30 н. вновь синтезированной РНК.
ДНК-лигазы
ДНК-лигазы катализируют образование фосфодиэфирной связи в однонитевом разрыве (ОР) днДНК между смежными 3’-гидроксильным и 5’-фосфатным концами разорванной нити. Для связывания ДНК-лигаз с ОР в днДНК абсолютно необходима 5’-фосфатная группа, а 3’-ОН-группа не обязательна. Однако обе группы требуются для реакции лигирования. ДНК-лигазы воссоединяют в ДНК только ОР, но не бреши, и пробел длиной даже в 1 н. полностью устраняет связывание фермента с ДНК. ДНК-лигазы участвуют в воссоединении фрагментов Оказаки, образующихся во время синтеза отстающей нити в процессе репликации. Кроме того, ДНК-лигазы устраняют ОР ДНК в процессах репарации и рекомбинации.
Прототипом бактериальных ДНК-лигаз является продукт гена ligA (ранее lig), расположенного на 51-ой мин генетической карты E. coli. Эта ДНК-лигаза имеет длину 671 остаток (мол. м. 73,7 кД), вызывает воссоединение ОР во всех процессах метаболизма ДНК (репликации, репарации и рекомбинации) и является абсолютно необходимой для роста клеток. В последнее время в полностью секвенированном геноме E. coli была обнаружена открытая рамка считывания, названная ligB и кодирующая вторую, более короткую ДНК-лигазу длиной 562 аминокислотных остатка, гомологичную LigA. Лигаза LigB также катализирует воссоединение ОР в ДНК in vitro, но её физиологическая роль пока не установлена.
У млекопитающих идентифицированы 4 разных типа ДНК-лигаз, содержащихся в ядерных экстрактах клеток. Главной функцией ДНК-лигазы I явлется воссоединение фрагментов Оказаки, хотя она участвует и в репарации ДНК. ДНК-лигаза I человека имеет длину 919 остатков (мол. м. 102 кД) и кодируется геном LIG1, расположенным в хромосоме 19 и содержащим 27 интронов. ДНК-лигазы IIIa, участвующая в эксцизионной репарации ДНК, и IIIb, (известная также как ДНК-лигаза II) кодируются альтернативно сплайсированными мРНК одного и того же гена, и их аминокислотные последовательности различаются только на С-конце. ДНК-лигаза IV по субстратной специфичности отличается от ДНК-лигаз I и III и у мышей является существенным белком. Она участвует в негомоогическом соединении концов ДНК во время репарации двунитевых разрывов ДНК.
У дрожжей S. cerevisiae отсутствуют гомологи ДНК-лизаз III млекопитающих, а гомолог ДНК-лигазы IV кодируется геном DNL4/LIG4 и также участвует в негомологическом соединении концов ДНК. Главная ДНК-лигаза I у дрожжей кодируется ядерным геном CDC9. Продуктами этого гена являются два белка, которые транслируются в одной рамке считвания, но с использованием разных инициирующих кодонов. При инициации трансляции на первом кодоне АУГ образуется белок длиной 755 остатков, имеющий на N-конце функциональную предпоследовательность, которая нацеливает белок на экспорт в митохондрии. При инициации трансляции на втором кодоне АУГ образуется белок длиной 732 остатка, локализующийся в ядре. После отщепления пропоследовательности в митохондриях первая форма ДНК-лигазы I становится тождественной главной ядерной форме.
Для активности ДНК-лигаз необходимы нуклеотидные кофакторы, в зависимости от природы которых лигазы можно разбить на два класса. ДНК-лигазы эукариотов, археев, бактериофагов, эукариотических вирусов и некоторых эубактерий используют в качестве кофакторов АТФ и относятся к классу I. ДНК-лигазы класса II, кофактором которых служит НАД+, имеются исключительно у эубактерий. ДНК-лигазы LigA и LigB у E.coli принадлежат к этому классу. АТФ-зависимые ДНК-лигазы гетерогенны по размеру (от 30 до >100 кД), а НАД-зависимые ДНК-лигазы являются высокогомологичными мономерными ферментами с мол. массами 70-80 кД. ДНК-лигазы двух разных классов почти не гомологичны друг другу, за исключением 5 из 6 мотивов последовательности, образующих активный центр суперсемейства нуклеотидилтрансфераз (см. рис. 2.00). Эти мотивы сохраняются и у кэпирующих ферментов эукариотических мРНК, к-рые близки к ДНК-лигазам по механизму действия, но используют в качестве субстрата ГТФ.
Механизм реакции, катализируемой ДНК-лигазами разных классов, состоит из 3 последовательных стадий (рис. 2.20). Первая стадия заключается в активации лигазы – аденилировании с образованием ковалентного интермедиата фермент – АМФ (Е-АМФ), в котором остаток АМФ связан фосфоамидной связью с e-аминогруппой консервативного остатка лизина в консервативном мотиве I активного центра. АТФ-зависимые эукариотические и архейные лигазы используют АТФ при образовании комплекса Е-АМФ и освобождают на первой стадии пирофосфат. Для бактериальных ДНК-лигаз донором АМФ в реакции аденилирования служит НАД+, при расщеплении которого освобождается НМН+. Последующие две стадии одинаковы для лигаз обоих классов.
Во время второй стадии АМФ переносится из комплекса Е-АМФ на 5’-концевую фосфатную группу ОР ДНК с образованием ковалентного интермедиата ДНК-АМФ с (5’®5’)-фосфоангидридной связью. Этот интермедиат является гораздо более короткоживущим, чем комплекс Е-АМФ. На заключительной стадии свободная 3’-гидроксильная группа ОР атакует (5'®5’)-связь в активированном комплексе ДНК-АМФ. Это сопровождается образованием фосфодиэфирной связи, устраняющей ОР в ДНК, и освобождением АМФ.
АТФ-зависимые ДНК лигазы НАД+-зависимые ДНК-лигазы
Е + рррА Е + НАД+
(-PPi) (-НМН+)
ЕрА
(+ 5’-р-ДНК на 5’-конце ОР)
Арр-ДНК (+ Е)
(+ ДНК-3’-OH на 3’-конце ОР)
ДНК-р-ДНК + рА
лигированная ДНК
O
t
Общий интермедиат Lys-eN+H2-P--СН2
EрA O- A
О
ОН OH
Рис. 2.20. Механизм лигирования ОР ДНК ДНК-лигазами двух классов. Представлена структура общего ковалентного интермедиата ЕрА
Несмотря на различия ДНК-лигаз двух разных классов, они выполняют близкие функции и могут замещать друг друга. Так, условно-летальный мутант E. coli, дефектный по НАД-зависимой лигазе LigA, полностью комплементируется активным фрагментом ДНК-лигазы I человека, а ДНК-лигаза LigA E. coli в свою очередь поддерживает митотический рост мутантов дрожжей с делециями генов CDC9 и LIG4, дефектных по АТФ-зависимым ДНК-лигазам I и/или IV. Однако бактериальная лигаза не исправляет дефект этих мутантов по экспцизионной репарации. Вероятно, для комплементации репаративного дефекта необходимы специфические взаимодействия ДНК-лигазы с родственными репаративными ферментами.
Рассмотрим более детально строение ДНК-лигаз и механизм последней стадии катализируемых ими реакций на примере НАД-зависимой ДНК-лигазы Tfi из термофильной бактерии Thermus filiformis – первой ДНК-лигазы, для которой методом рентгеноструктурного анализа установлена 3-мерная структура. Этот фермент, как и все ДНК-лигазы, имеет модульную организацию и состоит из 4 основных доменов (рис. 2.21). Он имеет длину 667 аминокислотных остатков (мол. м. 75,9 кД).
Рис. 2.21. Структура ДНК-лигазы Tfi из T. filiformis.
А. Домены и консервативные мотивы ДНК-лигазы Tfi. 1а – субдомен связывания НАД+, 1b – субдомен аденилирования, 2 – домен связывания олигонуклеотидов с укладкой ОВ, 3 – домен с цинковым пальцем и мотивом HhH спираль-шпилька-спираль, 4 – домен гомологии с белком BRCT; I, III, IV, V и VI – консервативные мотивы суперсемейства нуклеотидилтрансфераз.
B. Трехмерная структура ДНК-лигазы Tfi. Указано положение отдельных доменов
Самым большим является N-концевой домен 1, состоящий из двух субдоменов. На самом конце находится субдомен 1а длиной 73 остатка, являющийся сайтом связывания кофактора НАД+. Субдомен 1b (остатки 73-317) образован 3 антипараллельными b-слоями и несколькими фланговыми a-спиралями и является доменом аденилирования. Субдомен 1b содержит остаток лиз116 активного центра, подвергающийся аденилированию. Следующий домен 2 является доменом связывания олигонуклеотидов, т.к. он имеет укладку связывания олигомеров ОВ, похожую на укладку взаимодействия с онДНК у связывающих он ДНК белков. Домены 1 и 2 содержат все 5 консервативных мотивов нуклеотидилтрансфераз и вместе образуют минимальный домен ДНК-лигазы, достаточный для каталитической активности, т.к. в их пределах расположены все каталитически существенные аминокислотные остатки и остатки, необходимые для специфического связывания ДНК-лигазы с ОР ДНК. Домены 1 и 2 физически взаимодействуют друг с другом, что вызывает значительное повышение аденилирующей активности домена 1. Для такого взаимодействия необходимо сильное изменение конформации белка со смещением С-концевой части домена 2 в сторону домена 1.
Домен 3 (остатки 403-581) является вторым «некаталитическим» контактным участком, обеспечивающим связывание ДНК-лигазы с ДНК. Он образован 2 сегментами белка. Область остатков 403-429 содежит 4 консервативных остатка цистеина, образующих цинковый палец типа Сys4, а смежная область остатков 429-581 включает 4 копии мотива спираль-шпилька-спираль. Обе структуры часто используются белками для взаимодействия с ДНК. На самом С-конце ДНК-лигазы Tfi расположен необычный домен 4, или BRCT, гомологичный C-концевому домену эукариотического белка BRCA1, ассоциированного с раком молочной железы. Он состоит из 4-нитевого параллельного b-слоя и трех a-спиралей и имеется у очень многих лигаз. Домен 4 очень подвижен в так называемой «открытой» конформации ДНК-лигазы и сближен с N-концевым доменом 1а в «закрытой» конформации, в которой лигаза принимает тороидальную форму. Предполагается, что домен 4 играет в лигазе роль ворот, регулирующих связывание и освобождение днДНК. Подобно белку PCNA, в закрытой конформации ДНК-лигаза может образовывать скользящий зажим на ДНК и двигаться по ДНК до тех пор, пока она не встретит ОР. Аналогичную доменную структуру имеет ДНК-лигаза LigA E. coli, а в лигазе LigB отсутствуют два остатка цистеина цинкового пальца и весь С-концевой домен BRCT.
Известная 3-мерная структура ДНК-лигазы Tfi позволила предложить следующую гипотетическую схему (рис. 2.22), которая, вероятно, является общей для многих типов ДНК-лигаз. В исходном состоянии (А) лигаза находится в закрытом неактивном состоянии и неспособна связываться с ДНК. Аденилирование под действием НАД+ или АМФ (стадия I) переводит лигазу в открытое активированное состояние (В), в котором она неспецифически связывается с днДНК, вновь переходит в закрытое состояние С (стадия II) и транслоцируется по днДНК до тех пор, пока не встретит ОР в одной из нитей. Узнавание ОР в ДНК (стадия III) сопровождается изгибанием ДНК и изменением конформации белка на контактной поверхности между доменами 1 и 2. В результате 5’- и 3’-концы ОР оказываются в щели между этими доменами и сближаются с аденилированным остатком лиз116. Это обеспечивает деаденилирование белка и перенос АМФ на 5’-конец разорванной нити (стадия IV). В этом состоянии лигаза связывает катионы Mg2+, необходимые для атаки 3’-гидроксильной группы нити ДНК на активированный АМФ 5’-конец онДНК (стадия V). В результате происходит воссоединение ОР, освобождение неорганического фосфата pi и изменение конформации лигазы с переходом в открытую форму (F). Лигированная ДНК освобождается от ДНК-лигазы, которая возвращается в исходное неактивное закрытое состояние А (стадия VI).
Рис. 2.22. Модель каталитического цикла ДНК-лигазы Tfi.
I – аденилирование, II –связывание с ДНК, III – узнавание ОР и изгибание ДНК, IV – изменение конформации и деаденилирование фермента, V – воссоединение ОР и переход в открытую форму, V – освобождение ДНК.
1-4- домены ДНК-лигазы (см. рис. 2.21), 5 – ДНК с ОР; рi – неорганический фосфат. Стрелками указано положение связанной ДНК и АМФ в аденилированном ферменте
Рассмотрим более детально молекулярный механизм последней стадии лигирования – деаденилирования интермедиата ДНК-АМФ и образования фосфодиэфирной связи между концами ОР (рис. 2.23). В общих чертах, эта реакция протекает с участием 2-валентных катионов металлов так же, как и стадия полимеризации, катализируемой ДНК-полимеразами (см. 1.00). В механизме участвуют два катиона Mg2+, координационно связанные с карбоксильными группами остатков глу281, асп283 и асп118 в домене 1 ДНК-лигазы Tfi. Эти три остатка образуют отрицательно заряженный карман, расположенный рядом с аденилируемым остатком лиз116. Аденилированный интермедиат ДНК-АМФ в лигировании соответствует включаемому в ДНК 5’-дНТФ в реакции синтеза ДНК. В активный центр ДНК-лизазы Tfi входит также положительно заряженный остаток арг196, которые на предыдущей стадии узнавания ОР в ДНК мог электростатически взаимодействовать с отрицательно заряженным 5’-фосфатным концом ДНК. Аналогичную архитектуру активного центра, вероятно, имеют все ДНК-лигазы.
Рис. 2.23. Модель активного центра ДНК-лигазы Tfi на заключительной стадии IV (рис. 2.21) воссоединения ОР.
ДНК-топоизомеразы
Рис. 2.24. Образование (+)-супервитков перед рекликативной вилкой и прекатенанов позади неё в процессе репликации и появление структуры «куриной лапы» после остановки репликативной вилки и разборки реплисомы