Дифференциальное уравнение первого порядка у′ = f(x, y) называется уравнением с разделяющимися переменными, если его можно представить в виде:
у′ = f1(x) ∙ f2(y).
При решении дифференциальных уравнений с разделяющимися переменными полезно придерживаться следующей схемы:
- разделить переменные (т.е. в одной части уравнения должно быть выражение, содержащее только переменную х, в другой – переменную у);
- найти интегралы от обеих частей уравнения, найти частное решение уравнения;
- найти частное решение, удовлетворяющее начальным условиям (если они заданы).
Пример 2. Найти общее решение дифференциального уравнения: ydy + xdx = 0
Решение. Сначала разделим переменные, т.е. запишем уравнение в виде
ydy = -xdx,
затем найдем интегралы от обеих частей уравнения:
∫ ydy = -∫xdx,
получим
Пример 3. Найти частное решение дифференциального уравнения (решить задачу Коши для заданных начальных условий): (1+x2)dy – 2x(y+3)dx = 0, если у = -1 при х = 0.
Решение. Сначала найдем общее решение. Разделим переменные (для этого выражение (– 2x(y+3)dx) перенесем в правую часть и разделим обе части уравнения на (1+x2)(y+3)).
Получим: ,
,
найдем интегралы от обеих частей:
Вычислим отдельно каждый интеграл.
1. . Введем новую переменную t = у+3, тогда dt = (у+3)′∙ dу = dу, т.е. dt = dу. Подставим новую переменную в интеграл:
= = ln +C = ln +C
2. . Введем новую переменную t = 1+x2 , тогда dt = (1+x2)′∙ dx = 2xdx, откуда dx = . Подставим новую переменную в интеграл:
= = = ln +C = ln
Найдем общее решение данного уравнения:
Для нахождения частного решения подставим в общее решение вместо х и у заданные начальные значения: , и найдем С: С = ln 2.
Затем подставим в общее решение получившееся значение C:
Практическое занятие №27
Наименование занятия: Решение однородных и линейных дифференциальных уравнений
Первого порядка
Цель занятия:Научиться решать дифференциальные уравнения первого порядка
Подготовка к занятию:Повторить теоретический материал по теме «Обыкновенные дифференциальные уравнения».
Литература:
Григорьев В.П., Дубинский Ю.А. «Элементы высшей математики», 2008г.
Задание на занятие:
Найти общее решение дифференциальных уравнений
Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Найти частные решения дифференциальных уравнений, удовлетворяющих начальным условиям:
Вариант 1
Вариант 2
Вариант 3
Вариант 4
Вариант 5
,
если
,
если
если
,
если
,
если
,
если
,
если
,
если
,
если
,
если
Порядок проведения занятия:
Получить допуск к работе
Выполнить задания
Ответить на контрольные вопросы.
Содержание отчета:
Наименование, цель занятия, задание;
Выполненное задание;
Ответы на контрольные вопросы.
Контрольные вопросы для зачета:
Дать определение дифференциального уравнения первого порядка.
Какое уравнение называется линейным?
Какое уравнение называется однородным?
Как решаются дифференциальные уравнения первого порядка?
ПРИЛОЖЕНИЕ
Однородные уравнения
Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:
Дифференциальное уравнение вида называется однородным, если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.
Любое уравнение вида является однородным, если функции P(x, y) и Q(x, y) – однородные функции одинакового измерения.
Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.
Рассмотрим однородное уравнение
Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:
Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:
Правая часть полученного равенства зависит фактически только от одного аргумента , т.е.
Исходное дифференциальное уравнение таким образом можно записать в виде:
Далее заменяем y = ux, .
таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.
Далее, заменив вспомогательную функцию u на ее выражение через х и у и, найдя интегралы, получим общее решение однородного дифференциального уравнения.
Пример 1. Решить уравнение .
Решение. Введем вспомогательную функцию u.
.
Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее .
Подставляем в исходное уравнение:
Разделяем переменные:
Интегрируя, получаем:
Переходя от вспомогательной функции обратно к функции у, получаем общее решение:
Линейные уравнения
Дифференциальное уравнение называется линейным относительно неизвестной функции и ее производной, если оно может быть записано в виде:
при этом, если правая часть Q(x) равна нулю, то такое уравнение называется линейным однороднымдифференциальным уравнением, если правая часть Q(x) не равна нулю, то такое уравнение называется линейным неоднороднымдифференциальным уравнением.
P(x) и Q(x)- функции непрерывные на некотором промежутке a < x < b.