Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

СЛУЧАЙ 1. Выборки независимы



Используется U-критерий Манна—Уитнидля проверки гипотезы о принадлежности сравниваемых независимых выборок к одной и той же генеральной совокупности. Для его вычисления:

• Объединим все значения обеих выборок в один ранжированный ряд

• Каждому элементу этого ряда присвоим ранг, при этом если несколько элементов ряда совпадают по величине, то каждому присваивается ранг, равный среднему арифметическому их номеров

• Для каждой выборки находятся суммы рангов R

• Далее рассчитываются статистики:

 

где i = 1 и 2 – номер выборки

 

• В качестве тестовой статистики выбирают минимальную величину U и сравнивают ее с табличным значением для принятого уровня значимости и объемов выборок n1, n2.

• Если Uвыч > Uкрит то Н(0)

• Если Uвыч ≤ Uкрит то Н(1)

 

Работа с преподавателем

Пример. Проверим гипотезу о принадлежности сравниваемых независимых выборок к одной и той же генеральной совокупности с помощью непараметрического U-критерия.

 

Содержание вещества В в крови, моль\л

1 группа
2 группа

 

Н0:

 

 

номер                                        
1 гр                                        
2 гр                                        
ранг                                        

 

Отдельно для каждой выборки рассчитываем суммы рангов их вариант R1 и R2. В нашем случае:

Статистика U1 = , U2=

Вывод:

R1 R2 Uвыч-М-У p-уровень n1 n2
Вещество В            

СЛУЧАЙ 2. Выборки зависимые

В случае попарно связанных выборок применяется Т-критерий Уилкоксона. При этом:

· Вычисляются попарные разницы значений до и после

· Попарные разницы, кроме нулевых, без учета знака ранжируются в один ряд

· Разницам, кроме нулевых, присваиваются ранги, при чем одинаковым по модулю величинам присваивают одинаковый ранг

· Отдельно вычисляют сумму рангов положительных (Т+) и отрицательных разностей (Т-),

· Меньшую из двух таких сумм без учета знака выбирают в качестве критерия

· Если Твыч > Ткрит то Н(0)

· Если Твыч ≤ Ткрит то Н(1)

 

Работа с преподавателем

Стояла задача определить влияет ли препарат «Биоконт» на содержание белка в плазме крови. С этой целью препарат был испытан на десяти кроликах. Результаты эксперимента приведены в таблице.

 

Выдвигаем нулевую гипотезу:

до 2,4 3,7 4,2 2,8 3,3 4,5 3,9 2,7 4,4
после 3,5 4,9 4,4 3,6 2,5 4,1
разница                    
                     
ранжир                    
ранги                    
Т+                    
Т-                    

В качестве критерия выбираем меньшее значение Твыч =

Табличное значение для уровня значимости 0,05 и числа пар наблюдений п= (двусторонний критерий):

Ткрит =

Вывод:

 

Твыч-Уилкоксона p-уровень n
Концентрация белка      

Контрольные вопросы

1. Основные задачи биостатистики

2. Генеральная совокупность и выборка. Какие бывают выборки.

3. Понятие распределения, нормальное распределение и его свойства

4. В каком случае две совокупности считаются не отличающимися по данному признаку

5. Понятие статистических гипотез

6. Как проверяются гипотезы

7. Уровень значимости и достигнутый уровень значимости

8. Виды критериев, как выбрать критерий

Контрольное задание:

В контрольных задачах к Практическому занятию 2 проверить гипотезу о принадлежности двух выборок одной генеральной совокупности с использованием непараметрических критериев. Обосновать выбор критерия. Сформулировать нулевую и альтернативную гипотезы. Сделать выводы на уровне значимости a=0,01 или a=0,05

СРС 1. Определение минимального объема выборки.

На платформе «MOODLE» найдите дисциплину «Биостатистика» и задание по СРС 1 согласно своему варианту. После его выполнения введите ответы. Задание должно быть выполнено в течение срока изучения РАЗДЕЛА 2.


РАЗДЕЛ 3. АНАЛИЗ ОТНОСИТЕЛЬНЫХ ВЕЛИЧИН

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.