Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

СЛУЧАЙ 1. Выборки независимые. Предположим, что у нас есть два качественных признака, характеризующие обследованных



Предположим, что у нас есть два качественных признака, характеризующие обследованных лиц. Занесем эти данные в таблицу сопряженности 35

 

Таблица 35. Таблица сопряженности

 

  Первый признак (первая градация) Первый признак (вторая градация) Всего
Второй признак (первая градация) Частота встречаемости a Частота встречаемости b a +b
Второй признак (вторая градация) Частота встречаемости c Частота встречаемости d с+d
  n1=a+c n2=b+d n =a+b+c+d

 

Критерий хи-квадрат Пирсона вычисляется по формуле

 

(29)

 

Но для таблицы 2х2 более точные результаты дает критерий с поправкой Йетса

 

(30)

 

Его критическое значение находится для заданного уровня значимости α и числа степеней свободы f=(n-1)(m-1), где n и m число строк и число столбцов в таблице сопряженности (Приложение 5).

Если то Н(0) принимается,

В случае принимается Н(1)

Когда число наблюдений невелико и в клетках таблицы встречается частота меньше 5, критерий хи-квадрат неприменим и для проверки гипотез используется точный критерий Фишера. Процедура вычисления этого критерия достаточно трудоемка и в этом случае лучше воспользоваться компьютерными программами статанализа.

По таблице сопряженности можно вычислить меру связи между двумя качественными признаками – ею является коэффициент ассоциации Юла Q (аналог коэффициента корреляции)

 

(31)

 

Q лежит в пределах от 0 до 1. Близкий к единице коэффициент свидетельствует о сильной связи между признаками. При равенстве его нулю – связь отсутствует.

Аналогично используется коэффициент фи-квадрат (φ2)

 

(32)

 

В примере с беременными, страдающими преэклампсией, была получена следующая таблица сопряженности 36 Таблица 36. Данные к примеру  
  Преэклампсия есть Преэклампсии нет Всего в строке
Ожирение есть 120 (a) 140 (b)
Ожирения нет 332 (c) 1520 (d)
Всего в столбце

 

Н(0): наличие у беременной выраженного ожирения не влияет на риск возникновения преэклампсии

Н(1): наличие у беременной выраженного ожирения увеличивает риск возникновения преэклампсии

Выберем уровень значимости: α=0,05

 

для α=0,05 и f=(n-1)(m-1)=1

Т.к. принимается Н(1)

Вывод: наличие у беременной выраженного ожирения статистически значимо (с вероятностью не менее 95%) увеличивает риск возникновения преэклампсии.

А теперь рассмотрим клиническую значимость влияния фактора ожирения на протекание беременности. Из таблицы сопряженности можно посчитать, что доля лиц с ожирением среди тех, у кого нет преэклампсии, составляет 140/1660*100%=8,4%. Среди лиц с преэклампсией эта доля 26,5%, разница составляет 18,1%. Это выборочная разница и для нее необходимо определить 95% доверительный интервал. Как это сделать мы уже рассматривали. После расчетов получаем, что генеральная разница лежит в пределах от 13,8% до 22,4%. Даже нижний предел ДИ свидетельствует о клинической значимости этих различий.

Коэффициент ассоциации Юла Q=0,6 указывает на среднюю по силе связь между фактором риска и предродовым осложнением.

 

Эти же данные, обработанные в программе STATISTICA (модуль «непараметрическая статистика, таблицы 2×2»)

 

Таблица 37. Результаты статобработки

 

  Столбец 1 Столбец 2 Всего
Частоты, стро а 1
% случаев 5,7 % 6,6 % 12,3 %
Частоты, строка 2
% случаев 15,7 % 72 % 87,76 %
Всего
% всего 21,4 % 78,6 %  
Хи-квадрат (f=1) 107,99 p=0,0000  
Поправка Йетса 106,32 p=0,0000  
Фи-квадрат ,05113    
Точный ритерий Фишера, одностор.   ----  
Точный критерий Фишера, двустор.   ----  
Хи-квадрат Макнемара 1193,42 p=0,0000  

 

 

Таблицы сопряженности могут иметь и более сложный вид, когда каждый признак имеет более двух градаций. Нулевая гипотеза заключается в отсутствии связи между этими признаками. Ниже приведен пример подобного случая – нужно выяснить есть ли взаимосвязь между профессией и обращаемостью к врачу.

 

Таблица 38. Таблица сопряженности 3х4

 

  профессия всего
обращаемость к врачу строители шахтеры учителя госслужащие
до 3 в год
от 4 до 6 в год
более 6 в год
всего

 

Анализ таких таблиц также предпочтительно проводить с использованием компьютерных программ.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.