Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Тормозное рентгеновское излучение



 

Квантовая природа электромагнитного излучения проявляется также в свойствах тормозного рентгеновского излучения. Тормозное рентгеновское излучение возникает при бомбардировке быстрыми электронами металлических мишеней. В электронной трубке (рис. 5) свободные электроны возникают вследствие термоэлектронной эмиссии с нагреваемого

 

Рис. 5. током катода К (вольфрамовой спирали). Цилиндр Цслужит для фокусировки электронного пучка. Давление газа в таких трубках составляет 10-5…10-7 ммрт. ст. Антикатод трубки Акслужит одновременно и анодом.

Почти вся энергия электронов выделяется на антикатоде в виде тепла (в излучение превращается лишь I…3% энергии). Поэтому в мощных трубках антикатод приходится интенсивно охлаждать. С этой целью в теле антикатода делаются каналы, по которым циркулирует охлаждающая жидкость (вода или масло).

Если между катодом и антикатодом приложено напряжение U, электроны разгоняются до энергии eU. Попав в вещество антикатода, электроны испытывают сильное торможение и становятся источником электромагнитных волн. Напряжение на рентгеновской трубке может достигать 50 кВ и скорость электрона при этом составляет 0,4 с. Согласно классической электродинамике при торможении электрона должны возникать волны всех длин – от нуля до бесконечности. Длина волны, на которую приходится максимум интенсивности излучения, должна уменьшаться по мере увеличения скорости электронов, т. е. напряжения на трубке U. На рис. 6 даны экспериментальные кривые распределения интенсивности тормозного рентгеновского излучения по длинам волн,

 

  Рис. 6. полученные для разных значений U. Как видно из рисунка, выводы теории в основном подтверждаются на опыте. Однако имеется одно принципиальное отступление от требований классической электродинамики. Оно заклюю-чается в том, что кривые распределения интенсивности не идут к началу координат, а обрываются при конечных значениях длины волны lмин. Экспериментально установлено, что коротковолновая граница тормозного рентге-новского спектра lмин связана с ускоряющим напряжением U соотношением:   lмин = 12390/U, (9)

где lмин выражена в ангстремах, а U в вольтах.

Существование коротковолновой границы непосредственно вытекает из квантовой природы излучения. Действительно, если излучение возникает за счет энергии, теряемой электроном при торможении, то величина кванта w не может превысить энергию электрона eU: w < eU.

Отсюда получается, что частота излучения не может превысить значения wмin = eU следовательно длина волны не может быть меньше значения:

 

lмin = 2pс/wмin = 2p с/eU (e = w = 2p c/l) (10)

 

Таким образом, мы пришли к эмпирическому соотношению (9). Найденное из сопоставления (9) и (10) значение, и хорошо согласуется со значениями, определенными иными способами. Из всех методов определения постоянной планка метод, основанный на измерении коротковолновой границы тормозного рентгеновского спектра, считается самым точным.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.