Рассмотрим контакт металл – полупроводник. В случае контакта возможны различные комбинации (p‑ и n‑типы полупроводника) и соотношения термодинамических работ выхода из металла и полупроводника. В зависимости от этих соотношений в области контакта могут реализоваться три состояния. Первое состояние соответствует условию плоских зон в полупроводнике, в этом случае реализуется нейтральный контакт. Второе состояние соответствует условию обогащения приповерхностной области полупроводника (дырками в p‑типе и электронами в n‑типе), в этом случае реализуется омический контакт. И, наконец, в третьем состоянии приповерхностная область полупроводника обеднена основными носителями, в этом случае в области контакта со стороны полупроводника формируется область пространственного заряда ионизованных доноров или акцепторов и реализуется блокирующий контакт, или барьер Шоттки [15, 16].
В полупроводниковых приборах наибольшее применение получили блокирующие контакты металл – полупроводник, или барьеры Шоттки. Рассмотрим условие возникновения барьера Шоттки. Ранее было показано, что ток термоэлектронной эмиссии с поверхности любого твердого тела определяется уравнением Ричардсона:
. (2.29)
Для контакта металл – полупроводник n‑типа выберем условие, чтобы термодинамическая работа выхода из полупроводника Фп/п была меньше, чем термодинамическая работа выхода из металла ФМе. В этом случае согласно уравнению (2.29) ток термоэлектронной эмиссии с поверхности полупроводника jп/п будет больше, чем ток термоэлектронной эмиссии с поверхности металла:
.
При контакте таких материалов в начальный момент времени ток из полупроводника в металл будет превышать обратный ток из металла в полупроводник и в приповерхностных областях полупроводника и металла будут накапливаться объемные заряды – отрицательные в металле и положительные в полупроводнике. В области контакта возникнет электрическое поле, в результате чего произойдет изгиб энергетических зон. Вследствие эффекта поля термодинамическая работа выхода на поверхности полупроводника возрастет. Этот процесс будет проходить до тех пор, пока в области контакта не выравняются токи термоэлектронной эмиссии и соответственно значения термодинамических работ выхода на поверхности.
На рисунке 2.4 показаны зонные диаграммы различных этапов формирования контакта металл – полупроводник. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: jк = ФМе – Фп/п.
Для контакта металл – полупроводник p-типа выберем условие, чтобы термодинамическая работа выхода из полупроводника Фп/п была больше, чем термодинамическая работа выхода из металла ФМе. В этом случае ток термоэлектронной эмиссии с поверхности полупроводника jп/п будет меньше, чем ток термоэлектронной эмиссии с поверхности металла, согласно уравнению (2.29).
При контакте таких материалов в начальный момент времени ток из металла в полупроводник p‑типа будет превышать обратный ток из полупроводника в металл и в приповерхностных областях полупроводника и металла будут накапливаться объемные заряды – положительные в металле и отрицательные в полупроводнике.
Рис. 2.4. Зонная диаграмма, иллюстрирующая образование барьера Шоттки
В дальнейшем картина перехода к равновесному состоянию и формирования потенциального барьера для контакта металл – полупроводник p‑типа аналогична рассмотренной выше для контакта металл – полупроводник n‑типа.