Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Биполярный транзистор в схеме с общей базой. Зонная диаграмма и токи



На рисунке 5.6а показана зонная диаграмма биполярного транзистора в схеме с общей базой в условиях равновесия. Значками (+) и (–) на этой диаграмме указаны основные и неосновные носители.

Для биполярного транзистора в схеме с общей базой активный режим (на эмиттерном переходе – прямое напряжение, на коллекторном – обратное) является основным. Поэтому в дальнейшем будет рассматриваться транзистор в активном режиме, для p‑n‑р биполярного транзистора Uэ > 0, Uк < 0.

Для биполярного транзистора p‑n‑р типа в активном режиме эмиттерный переход смещен в прямом направлении, и через него происходит инжекция дырок, как неосновных носителей, в базу. База должна иметь достаточно малую толщину W (W << Lp, где Lp – диффузионная длина неосновных носителей), чтобы инжектированные в базу неосновные носители не успевали прорекомбинировать за время переноса через базу. Коллекторный переход, нормально смещенный в обратном направлении, "собирает" инжектированные носители, прошедшие через слой базы.

Рассмотрим компоненты токов в эмиттерном и коллекторном переходах (рис. 5.7). Для любого p‑n перехода ток J определяется суммой электронного Jn и дырочного Jp компонент, а они в свою очередь имеют дрейфовую и диффузионную составляющие:

.

При приложении к эмиттерному переходу прямого напряжения Uэ > 0 в биполярном транзисторе p‑n‑р происходит инжекция дырок из эмиттера в базу Iэр и электронов из базы в эмиттер Iэn. Ввиду того, что эмиттер легирован намного сильнее базы, ток инжектированных дырок Iэр будет значительно превышать ток электронов Iэn. Инжектированные в базу дырки в результате диффузии будут перемещаться в коллекторному переходу, и если ширина базы W много меньше диффузионной длины Lp, почти все дырки дойдут до коллектора и электрическим полем коллекторного p‑n‑р перехода будут переброшены в р‑область коллектора. Возникающий вследствие этого коллекторный ток лишь немного меньше тока дырок, инжектированных эмиттером.

Вольт-амперные характеристики БТ в активном режиме (Uк < 0, |Uк| >> 0):

,

где Iэ – ток в цепи эмиттера, Iк – ток в цепи коллектора, Iб – ток на базовом выводе.

В активном режиме к эмиттеру приложено прямое напряжение и через переход течет эмиттерный ток Iэ, имеющий две компоненты:

,

где Iэр – ток инжекции дырок из эмиттера в базу, Iэn – ток инжектированных электронов из базы в эмиттер. Величина «полезной» дырочной компоненты равняется Iэp = γ·Iэ, где γ – эффективность эмиттера. Величина дырочного эмиттерного тока, без рекомбинации дошедшая до коллектора, равняется γκIэ.

Ток базы Iб транзистора будет состоять из трех компонент, включающих электронный ток в эмиттерном переходе Iэn = (1 – γIэ, рекомбинационный ток в базе (1 - κ)γIэ и тепловой ток коллектора Iк0.

Тепловой ток коллектора Iк0 имеет две составляющие:

,

где I0 – тепловой ток, Ig – ток генерации.

На рисунке 5.7 приведена схема биполярного транзистора в активном режиме, иллюстрирующая компоненты тока в схеме с общей базой.

Рис. 5.7. Схема, иллюстрирующая компоненты тока в биполярном транзисторе в схеме с общей базой

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.