Стационарные состояния электрона в идеальном кристалле характеризуются квазиимпульсом р. Запишем принцип неоднородностей Гейзенберга для квазиимпульсов dpx, dpy и dpz:
, (1.1)
Перемножим соответственно левые и правые части этих соотношений. Получим
, (1.2)
где и , то есть dp – это некоторый объем в пространстве квазиимпульсов px, py, pz, то есть внутри зоны Бриллюэна, а dV – некоторый объем внутри полупроводника. При этом объем dV – не обязательно бесконечно малая величина. Он может быть и конечным. Для расчета концентраций носителей заряда (то есть числа носителей в единице объема полупроводника) выделим внутри кристалла единичный объем dV = 1 см3. Тогда из (1.2) получим dp £ h3. То есть внутри объема dp = h3 в зоне Бриллюэна может иметь место только одно квантовое состояние, которое как бы размыто по всему этому объему. Итак, h3 – это объем одной “квартирки” в зоне Бриллюэна, в которую можно поместить только два электрона с разными спинами, и не более. Поэтому число квантовых состояний, соответствующее элементу объема dp в зоне Бриллюэна и рассчитанное на единицу объема кристалла, равно – то есть числу “квартирок” в объеме dp. При заполнении зоны проводимости электронами заполняются вначале самые нижние уровни. Зона проводимости – одномерная относительно энергии (рис. 1.3а). Зона Бриллюэна – трехмерная (px, py, pz) (рис. 1.3б). Заполнение зоны Бриллюэна начинается с самых малых значений квазиимпульса p. Поэтому в качестве dp надо выбрать элемент объема, заключенный между двумя очень близкими изоэнергетическими поверхностями (см. рис. 1.3б). Внутри этого тонкого шарового слоя радиусом p и толщиной dp число квантовых состояний будет равно:
. (1.3)
Рис. 1.3. Диаграмма для расчета плотности квантовых состояний:
а) распределение электронов по энергии в зоне проводимости; б) зона Бриллюэна для расчета плотности состояний
Определим число квантовых состояний в зоне проводимости в узком интервале энергий от Е до Е + dЕ, рассчитанное на единицу объема кристалла. Его можно представить в виде N(E)dE, где N(E) есть плотность состояний.
Вблизи дна зоны проводимости для случая изотропного параболического закона дисперсии энергия электрона
(1.4)
где ЕC – энергия, соответствующая дну зоны проводимости. Для удобства эффективную массу электрона mn будем писать без звездочки. Из (1.4) получим , то есть и . Подставляем в (1.3), имеем
. (1.5)
Отсюда
. (1.6)
Аналогичная формула получается и для валентной зоны, но только вместо (Е – ЕC) напишем (ЕV– Е), а вместо mn – эффективную массу дырки mp.
Как видно из (1.6), плотность квантовых состояний возрастает по мере удаления от дна зоны проводимости.