В 1958 г. американские ученые Дж. Бардин и В. Браттейн создали полупроводниковый триод, или транзистор. Это событие имело громадное значение для развития полупроводниковой электроники. Транзисторы могут работать при значительно меньших напряжениях, чем ламповые триоды, и не являются простыми заменителями последних: их можно использовать не только для усиления и генерации переменного тока, но и в качестве ключевых элементов. Определение «биполярный» указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух сортов (электроны и дырки).
Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов. В транзисторе используются оба типа носителей – основные и неосновные, поэтому его называют биполярным.
Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и коллектора (рис. 5.1).
Рис. 5.1. Схематическое изображение транзистора типа p‑n‑p:
Э – эмиттер, Б – база, К – коллектор, W – толщина базы, ЭП – эмиттерный переход, КП – коллекторный переход
Переход, который образуется на границе эмиттер – база, называется эмиттерным, а на границе база – коллектор – коллекторным. В зависимости от типа проводимости крайних слоев различают транзисторы p‑n‑р и n‑р‑n.
Условные обозначения обоих типов транзисторов, рабочие полярности напряжений и направления токов показаны на рисунке 5.2.
Рис. 5.2. Условные обозначения транзисторов:
а) транзистор p‑n‑р, б) транзистор n‑р‑n
По технологии изготовления транзисторы делятся на сплавные, планарные, а также диффузионно‑сплавные, мезапланарные и эпитаксиально‑планарные (рис. 5.3).
Рис. 5.3. Разновидности транзисторов по технологии изготовления
Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:
1. Режим отсечки – оба p‑n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток;
2. Режим насыщения – оба p‑n перехода открыты;
3. Активный режим – один из p‑n переходов открыт, а другой закрыт.
В режиме отсечки и режиме насыщения управление транзистором невозможно. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы.
Область транзистора, расположенная между переходами, называется базой (Б). Примыкающие к базе области чаще всего делают неодинаковыми. Одну из них изготовляют так, чтобы из нее наиболее эффективно происходила инжекция в базу, а другую – так, чтобы соответствующий переход наилучшим образом осуществлял экстракцию инжектированных носителей из базы.
Область транзистора, основным назначением которой является инжекция носителей в базу, называют эмиттером (Э), а соответствующий переход – эмиттерным.
Область, основным назначением которой является экстракция носителей из базы, называют коллектором (К), а переход – коллекторным.
Если на эмиттерном переходе напряжение прямое, а на коллекторном переходе – обратное, то включение транзистора считают нормальным, при противоположной полярности – инверсным.
По характеру движения носителей тока в базе различают диффузионные и дрейфовые биполярные транзисторы.
Основные характеристики транзистора определяются в первую очередь процессами, происходящими в базе. В зависимости от распределения примесей в базе может присутствовать или отсутствовать электрическое поле. Если при отсутствии токов в базе существует электрическое поле, которое способствует движению неосновных носителей заряда от эмиттера к коллектору, то транзистор называют дрейфовым, если же поле в базе отсутствует – бездрейфовым (диффузионным).