Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Теоремы о непрерывных функциях. Непрерывность на отрезке. Равномерная непрерывность.



Теорема: f(x) и g(x) непрерывны в т.х0, то:

- непрерывны в точке х0.

Доказательство: : =f(x0).

: =g(x0).

.

Следствие 1: любой многочлен является непрерывной функцией любой точки действительной оси.

Следствие 2: любая рациональная функция: такая, что (это значит, что любая рациональная функция может иметь не более чем конечное число т.р.2).

Теорема:( о существовании обратной функции):

если функция y=f(x) непрерывна и строго монотонна на [a,b] оси Ох, то обратная функция также непрерывна и монотонна на соответствующем отрезке [c,d] оси Оу.

Свойства функций, непрерывных на отрезке:

Теорема (Вейерштрасса): если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Следствие: если функция непрерывна на отрезке, то она ограничена на этом отрезке.

Непрерывность функции в интервале и на отрезке:

Функция y=f(x) называется непрерывной в интервале (a,b),если она непрерывна в каждой точке этого интервала.

Функция y=f(x) называется непрерывной на отрезке [a,b] , если она непрерывна в интервале (a,b) и в точке х=а непрерывна справа (т.е. ), а в точке x=b непрерывна слева ( ).

Равномерная непрерывность:

Функция f: X → R называется равномерно-непрерывной на множестве X, если

.

 

 

Производная функции, ее геометрический и физический смысл.

Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

 


у

f(x)

 

 

f(x0 +Dx) P

Df

f(x0) M

 

a b x 0 x0 Dx x0 + Dx

 

 

 

Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.

 

,

 

где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).

 

Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.

 

Уравнение касательной к кривой:

 

Уравнение нормали к кривой: .

 

Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.

Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.

Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.


Дифференциал функции.

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢(x)Dx, т.е. f¢(x)Dx- главная часть приращения Dу.

 

Определение. Дифференциалом функции f(x) в точке х называется главня линейная часть приращения функции.

Обозначается dy или df(x).

Из определения следует, что dy = f¢(x)Dx или dy = f¢(x)dx.

Можно также записать:




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.