А-1, A-1*A=A*A-1=E, где E –единичная матрица. A-1 имеет те же размеры, что и A.
Алгоритм нахождения обратной матрицы:
1. вместо каждого элемента матрицы аij записываем его алгебраическое дополнение.
аij Аij
А* - союзная матрица.
2. транспонируем полученную союзную матрицу. А*Т
3. делим каждый элемент союзной матрицы на определитель матрицы А.
, A-1 = A*Т
Теорема: (об аннулировании определителя): сумма произведений элементов некоторого ряда определителя на алгебраическое дополнение к элементам другого параллельного ряда всегда равна нулю.
Ранг матрицы. Способы нахождения.
Максимальное число линейно-зависимых строк матрицы A наз. рангом матрицы и обознач r(a). Наибольшее из порядков миноров данной матрицы отличных от 0 наз рангом матрицы.
Свойства:
1)при транспонировании rang=const.
2)если вычеркнуть нулевой ряд, то rang=const;
3)rang=cost, при элементарных преобразованиях.
3)для вычисл ранга с помощью элементар преобраз матрица A преобраз в матриц B, ранг которой легко находится.
4)ранг треуг матрицы=числу ненулевых элем, располож на глав. диагоналях.
Методы нахождения ранга матрицы:
1) метод окаймляющих миноров
2) метод элементарных преобразований
метод окаймляющих миноров:
метод окаймляющих миноров позволяет алгоритмизировать процесс нахождения ранг-матрицы и позволяет свести к минимуму количество вычисления миноров.
1) если в матрице все нулевые элементы, то ранг = 0
2) если есть хоть один ненулевой элемент => r(a)>0
теперь будем окаймлять минор М1, т.е. будем строить всевозможные миноры 2-ого порядка, ктр. содержат в себе i-тую строку и j-тый столбец, до тех пор, пока не найдем ненулевой минор 2-ого порядка.
М2 (i, i1, j.j1)
Дальше аналогично строим миноры 3-го порядка, окаймляющие М2 (минор), до тех пор, пока не получим минор, отличный от нуля.
Процесс будет продолжаться до одного из событий: 1. размер минора достигнет числа к.
3. на каком-то этапе все окаймленные миноры окажутся = 0.
В обоих случаях величина ранга-матрицы будет равна порядку большего отличного от нуля минора.
Метод элементарных преобразований: как известно, понятие треугольной матрицы определяется только для квадратных матриц. Для прямоугольных матриц аналогом является понятие трапецивидной матрицы.