Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Бесконечно малые и бесконечно большие функции.



Функция называется бесконечно большой при ,если для любого числа M>0 существует число = (М)>0, что для всех х, удовлетворяющих неравенству 0< , выполняется неравенство . Записывают . Коротко:

Функция называется бесконечно большой при ,если для любого числа M>0 найдется такое число N=N (М)>0, что для всех х, удовлетворяющих неравенству , выполняется неравенство . Коротко:

Всякая бесконечно большая функция в окрестности точки х0 является неограниченной в этой окрестности.

Бесконечно малая функция:
Функция называется бесконечно малой при ,если : для любого числа >0 найдется число >0 такое, что для всех х, удовлетворяющих неравенству 0< , выполняется неравенство .

Теорема: алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция.

Док-во:

 

Теорема: произведение ограниченной функции на бесконечно малую функцию есть функция бесконечно малая.

Док-во:

 

Следствие: так как всякая б.м.ф. ограничена, то из теоремы вытекает произведение двух б.м.ф. есть функция бесконечно малая.

Следствие: произведение б.м.ф. на число есть функция бесконечно малая.

Теорема: частное от деления бесконечно малой функции на функцию, имеющую отличный от нуля предел, есть функция бесконечно малая.

Док-во:

 

Теорема: если функция - бесконечно малая, то обратная ей функция – бесконечно большая и наоборот.

Док-во:

 


Односторонние пределы.


число А называется пределом функции слева в точке x0, если для любого число >0 существует число = ( )>0 такое, что при выполняется неравенство .

Предел слева записывают так:

Аналогично определяется предел функции справа:

.

Пределы функции слева и справа называются односторонними пределами.

Сравнение бесконечно малых.

Две б.м.ф. сравниваются между собой с помощью их отношения:

1. если , то и называются бесконечно малыми одного порядка.

2. если то называется бесконечно малой более высокого порядка, чем .

3. если то называется бесконечно малой более низкого порядка, чем .

4. если не существует, то и называются несравнимыми бесконечно малыми.

Таковы же правила сравнения б.м.ф. при и .

Эквивалентные бесконечно малые:

Sinx x, при ex - 1 x,
tgx x, ax - 1 x*lna,
arcsinx x, ln(1+x) x,
arctgx x, loga(1+x) x*logae
1-cosx , (1+x)k - 1 k*x, k>0,

 

 

Теоремы о пределах.

Теорема: если существует и и они равны между собой, то существует = .

Теорема: если , , то =>

1)

2)

3)

Примечание 1: 1-е и 2-е свойства распространяются на любое конечное число слагаемых или сомножителей, однако число слагаемых и сомножителей не может быть .

Примечание 2:

Теорема: если , то функция g(x) = f(x) – a является б.м. при .

Следствие: если => в окрестности т. х0 g(x) + а = f(x), где g(x)- б.м. при .

Теорема: если и существуют конечные пределы, когда , => .

Теорема (о сжатой переменной): если и существуют конечные пределы => существует: .

Теорема (о пределе сложной функции):

Пусть: х0, , U=f(x), .

Сама теорема:

Если задана сложная функция, и существуют конечные пределы и , то


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.