Скалярное произведение векторов - число = произвед длин на косинус между ними.
Скалярное произ 2х векторов = модулю одного умноженного на проекцию другого на соноправленную с 1-ым вектором ось.
Свойства:
1.a*b=b*a
2. (C*a)*b=C*(a*b)
3. a(b+c)=a*c+b*c;
4.
5. (a, b) = 0 =>
6. ij = jk = kj = 0.
Теорема 1: в пространстве R3 в ортонормированном базисе :
Следствие из Т1:
Для вектора :
Механический смысл скалярного произведения:
Пусть - сила, которая перемещает тело в направлении вектора S ( на длину ) =>
13. векторное произведение векторов. Определение. Вычисление. Свойства.
Три некомпланарных вектора a, b, с взяты в указанном порядке и образуют правую тройку, если с конца 3-его вектора с кратчайший поворот от 1-ого a ко 2-ому b видим совершающийся против часовой стрелки, и левую – если по часовой.
Векторное произведение вектора a на b - это c, который:
1)с перпендикулярно a и b;
2)имеет длину, численно равную площади параллельного, параллелограмма на векторах |c|=|a|*|b|*sinσ; 3) векторы a, b, с образ правую тройку.
Замечание: Из определения вытекает след соотношения между ортами ijk:
1. i*j=k;
2. j*k=i;
3. k*i=j;
Свойства:
1)векторное произ при перестановке множителей меняет знак. ( )
2)два ненулевых вектора коллинеарны, когда их векторное произв =0.
Пункты: 1)условие коллиниарности: a//b => a*b=0;
2)нахождение S параллелограмма и S треуг. Sпар= sin . Sтр=0,5*
3)определение момента силы. |M|=|F|*|S|.
Теорема:
,
Смешанное произведение векторов. Определение. Вычисление. Свойства.
Смешанное произведение 3х векторов равно объёму параллелепипеда, построенного на этих векторах, взятого со знаком + (-), если эти векторы образуют правую (левую) тройку.
Свойства:
1)смешанное произв не меняется при циклической перестановке его множителей.
( .
2)смешанное произв меняет знак при перемене мест любых букв любых сомножителей
3)смешанное произ ненулевых векторов =0 тога, когда они компланарны.