Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ



Баллон с распределительным краном, U- образный манометр, насос секундомер. Схема установки предоставлена на рис.1.

Установка состоит из стеклянного баллона Б, который может быть соединен с помощью распределительного крана К либо c атмосферой, либо с насосом Н и манометром М. Водяной U -образный манометр измеряет разность между давлением в баллоне и атмосферным давлением в мм. водного столба.

Для определения отношения теплоемкостей для газа, находящегося в баллоне, с ним проводят последовательно­сть термодинамических процессов, представленных на -диаграммерис.2.Обозначим через исходные величины термодинамических параметров газа в баллоне. Сначала в баллон накачивается воздух (процесс 1-2). При этом газ в баллоне сжимается и нагревается. После изохорического остывания до начальной комнатной температуры газ имеет некоторое давление (процесс 2-3). Затем краном соединяют баллон с атмосферой, и газ, адиабатически расширяясь, охлаждается (процесс 3-4), его давление падает до величины , а температура - до величины . В момент достижения давления кран К перекрывается и газ изохорически нагревается до комнатной температуры (процесс 4-5). В конечном состоянии давление газа , а температура равна .

Масса газа, находящегося в баллоне, в начальном состоянии выражается соотношением: .

Нетрудно видеть, что в течение всех рассмотренных термодинамических процессов масса газа в баллоне больше или равна .

Назовем массу рабочей массой газа, эта масса остается все время в баллоне. Накачиваемый и выпускаемый из баллона газ служит лишь для сжатия и расширения рабочей массы газа.

Введем обозначения и . Тогда величина оценивается по формуле:

. (2)

 

Вывод выражения ( 2 ) приводится в приложении.

Измерив значения и , можно было бы рассчитать величину . Однако при таком методе расчета необходимо выполнение следующих условий:

1. При адиабатическом расширении (процесс 3-4) кран баллона должен быть перекрыт в момент, когда давление в баллоне станет равным ;

2. Время выпуска газа должно быть достаточно мало, так, чтобы теплообменом с окружающим воздухом можно было пренебречь.

Практически эти условия выполнить трудно, что приводит к ошибкам в определении и , и следовательно в оценке .

После открытия крана (процесс 3 - 4) давление в баллоне со временем уменьшается по экспоненциальному закону и через 0.1 секунды отличается от не более чем на 1% .

Однако вручную открыть кран на 0,1 секунды трудно, практически время это оказывается значительно больше. Рассмотрим влияние времени, в течение которого после достижения давления кран К еще остается открытым, не влияет на результат опыта.

Предположим, что после достижения давления кран остается открытым еще некоторое время , за это время за счет теплообмена со стенками баллона и расширения газа происходит изобарический нагрев газа (процесс 4-6). После того как кран закрывается (точка 6) происходит изохорический нагрев газа (процесс 6-7), давление в баллоне достигает величины (точка 7). Точка 7 лежит на той же изотерме, что точки 3 и 5, но Очевидно, что зависит от времени выхода газа из баллона, и значение , рассчитанное по формуле (2) будет иметь погрешность.

Рассмотрим детальнее процесс нагревания газа на участке (4-6). За счет теплопроводности через стенки баллона за время газ будет получать количество теплоты ,

где . Здесь -температура газа в баллоне, -температура окружающего воздуха, - коэффициент теплопроводности стекла, и толщина и площадь стенок баллона соответственно.

Уравнение баланса энергии для газа, находящегося в баллоне, может быть записано в виде:

. (3)

Разделив переменные и подставив из уравнения Менделеева-Клапейрона, получим:

или .

Последнее выражение можно представить:

,

его интегрирование дает:

,

где постоянная интегрирования.

откуда

. (5)

Обозначим температуру газа в баллоне в момент (точка 4) через , а через , тогда постоянная интегрирования А будет равна .

Окончательно соотношение (5) примет вид:

, (6)

где учтено выражение (1) и то обстоятельство, что точки 3 и 7 лежат на одной изотерме.

После того как в момент времени t кран К перекрывается, нагрев газа в баллоне также продолжается, но уже изохорически. Давление газа в конце концов достигает величины . Для изохорического процесса (участок 6-7) имеем:

или . (7)

С другой стороны из уравнения адиабаты (участок 3-4) имеем:

.

Воспользуемся формулой бинома Ньютона, пренебрегая членами второго порядка малости:

.

И учитывая, что получим

и . (8)

Решая совместно уравнения (6),(7),(8) и снова пренебрегая слагаемыми второго порядка малости, получим:

. (9)

Это уравнение учитывает как теплообмен с окружающей средой, так и уход части газа из баллона в процессе нагрева. Уравнение позволяет найти по измеренным при разных величинах значениями и . Прологарифмируем выражение (9)

.

График зависимости от t является линейной функцией. Если экстраполировать этот график по t =0, то он будет отсекать на оси ординат отрезок

. (10)

Потенцируя выражение (10) и преобразуя его, получим

. (11)

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.