Цель работы: установить факторы, влияющие на производительность плавления электрода при сварке плавящимся электродом.
Определить основные показатели, характеризующие процесс плавления электрода при ручной дуговой сварке штучным электродом.
Содержание работы: теоретически оценить факторы, влияющие на процесс плавления электрода. Практически установить показатели, характеризующие плавление электрода при ручной дуговой сварки штучным электродом и условия ограничивающие изменение силы сварочного тока для данного вида сварки.
Основные сведения
Плавление электрода осуществляется за счет прохождения сварочного тока. Нагрев и плавление происходит из-за выделения теплоты в самом электроде и главным образом, за счет теплоты дуги. Эффективная мощность, выделяемая в дуге состоит из суммы мощностей выделяемых в различных областях дуги: на аноде, катоде и в столбе дуги. Мощность, выделяемая на аноде 1,3 ÷ 2,0 раза больше, чем на катоде. Следовательно, в первую очередь, скорость плавления электрода зависит от рода, полярности.
Наивысшая производительность плавления электрода при сварке постоянным током обратной полярности. Кроме этого на скорость плавления влияют и другие факторы: сила тока, вид сварки и сварочные материалы и т.д.
Для оценки влияния различных факторов на процесс плавления электрода, надо рассмотреть два принципиально разных вида сварки плавящимся электродом: ручная дуговая сварка штучным электродом (РДС) и механизированная сварка, которые представлены на рис. 1.
На рис. 1 øэл – диаметр электрода; Lэ – длина электрода; l0- длина огарка; Lв – вылет электрода;j- плотность тока; Тпл, Ткап и Тпод – температура плавления электродного металла, переходящей капли и подогрева электродного стержня (огарка); FРДС >> FМЕХ—площади наплавки при ручной дуговой сварке и механизированной, Vпп – скорость подачи электрода; Q - тепло, выделяемое в электродном стержне, имеющем сопротивление (Rэл) под действием сварочного тока (I ) и за время горения (t ).
РДС – токоподвод зафиксирован, и электрод нагревается проходящим через него током.
В начале процесса температура электрода (металлического стержня и покрытия)соответствует окружающей среды (комнатной температуре Тк = 180С), в зоне горения дуги и прилегающий участок электрода концентрированно разогрет до температуры плавления электрода (Тпл) и существует отрывающаяся капля металла значительно выше температуры плавления (Ткап).
При окончании процесса горения электрода он подогрет проходящим током (рис. 1б). Температура подогрева (Тпод) принципиально зависит от плотности тока и времени его прохождения через оставшуюся часть электрода и покрытия («огарок электрода») и она не должна влиять на процессы, происходящие в плавильном пространстве (ухудшение газовой и шлаковой защиты, выгорание активных элементов и т.п.).
Многолетним опытом (эмпирически) установлена связь между металлом электрода, его диаметром и длиной (которая определяет время прохождения тока через «огарок») и она оговорена требованиями ГОСТа.
При РДС минимальная сила тока на плавящемся электроде обусловлена условиями образования сварочной ванны и формированием соединения, а максимальный ток ограничен нагревом покрытия в конце горения электрода и зависит от типа покрытия. Температура подогрева (Тпод) не должна превышать 700 ÷ 800 0С для основного типа покрытия (Б) и 300 ÷ 350 0С для других типов покрытий. Исходя из выше сказанного, практически плотность тока ( j ) для РДС составляет 10 ÷ 18 А/мм2.
При механизированных видов сварки, когда вылет электрода (рис. 1в) составляет всего 10 ÷ 20 диаметров электрода (токоподвод скользящий) и тепловой режим нагрева не меняется в процессе сварки, соответствует начальному состоянию (Тпод=Тком). Это позволило прейти на высокие плотности тока ( j ) до 500 А/мм2 и максимальная сила тока определяется толщиной свариваемого металла и технологией сварки.
Влияния других факторов на процессе плавления электрода можно установить при сравнении эффективной мощности дуги (qи) и процесса передачи тепла в зоне горения дуги, по тепловому балансу (qт), эти две величины равны. qи = qт
qи = ηэ IgUg;
qт = (Sк – Sт) · Fэл· ρ · Vnn
Igи Ug – сила тока и напряжение на дуге.
ηэ – к.п.д. данного вида сварки
Sк и Sт – теплосодержание переходящей капли и теплосодержание остающиеся на электроде.
Fэл – сечение электропроводной металлической части электрода.
ρ – плотность металлической электропроводной части электрода.
Vnn – скорость расплавления электрода или скорость подачи электрода
Теоретически мгновенная производительность зависит
Мг = (ηэ · Ug · Ig ) / (Sк – Sт)
Чем больше мгновенная производительность плавления электрода, тем быстрее процесс получения сварного соединения.
Производительность можно увеличить:
- За счет повышения ηэ – к.п.д. вида сварки, т.е. сварка в СО2 – 0,7, АДФ – 0,9.
- Повысить напряжение Ug, но оно имеет ограничения по виду сварки и находится в узком диапазоне значений.
- Повысить силу тока Ig, влияние и границы изменения силы сварочного тока были рассмотрены ранее и они находятся в широчайшем диапазоне изменений.
- Уменьшить разницу между теплосодержаниями переходящей капли (Sк) и торца электрода (Sт), т.е. (Sк - Sт) свести к минимуму. Эта величина зависит от теплофизических свойств электродного металла и рода тока, что так же было рассмотрено ранее. Практически для определенного вида сварки является величиной постоянной.
Следовательно, производительность плавления электрода зависит в основном от силы тока. Но на сколько эффективен процесс плавления можно оценить коэффициентом расплавления αр:
г/(А∙час)
Данное выражение имеет теоретическое обоснование. На практике коэффициент расплавления определяется по массе расплавленной части электрода – Мр (г):
г/(А∙час)
Определенный таким образом коэффициент расплавления позволяет оценить эффективность единицы силы сварочного тока при различных видах сварки и сварочных материалах.
При сварке плавящимся электродом в первую очередь необходимо знать количество металла перешедшего в шов, т.е. наплавленного металла. Этот процесс оценивается коэффициентом наплавки.
г/(А∙час)
где Мн – масса наплавленного металла.
Переход электродного металла в металл шва связан с потерями на выгорании, разбрызгивание и т.п. для учета этих процессов существует коэффициент потерь:
Следует отметить, что возможно ввести металлическую составляющую в плавильное пространство не через металлический электропроводный электрод и она перейдет в металл шва, т.е. возможен вариант, когда масса наплавленного металла ( ) будет больше массы расплавленного металла ( ).
Это можно сделать различными способами.
- ввести в покрытие штучных электродов металлическую составляющую;
- использование керамических флюсов при автоматической сварке.
- использование порошковых проволоки и ленты
- использование спеченной ленты, для которой понятие коэффициента расплавления не применимо; и другие технологические приемы.
Существуют различные показатели для сравнения видов сварки и сварочных материалов. В данной работе будут определены показатели, используемые для ручной дуговой сварки плавящимся штучным электродом.