Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Связанных с теорией массового обслуживания



Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени t1, t2,, ..., tk, ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t1, t2,, ..., перейти к случайным величинам z1, z2,,..., zm, ... , таким образом, что:

Случайные величины zk являются длинами интервалов времени между последовательными моментами tk.

Совокупность случайных величин zi считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины zk, поэтому часто пользуются соответствующей функцией плотности f(z1, z2,...,zk).

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины zk независимы. Поэтому . Функции fi(zi) при i>1 представляют собой условные функции плотности при условии, что в начальный момент интервала zk (i>1) поступила заявка. В отличие от этого функция f1(z1) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t0, t0+t) не зависит от t0, а зависит только от t и k). Для стационарных потоков без последействия имеют место соотношения:

где l – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется nсв свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q=1/m. В более сложных случаях вероятности q1, q2,...,qm считаются зависящими от времени пребывания заявки в системе, времени , остающегося до получения отказа и других параметров.

Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R=R(t), задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время tp. Величину tp будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более tn) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.