Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Примеры задач линейного программирования



 

Задача об использовании ресурсов.Для изготовления двух видов продукции и используется четыре вида ресурсов , Запасы ресурсов, число единиц ресурсов, затрачиваемых на изготовление единицы продукции, приведены в таблице 1:

 

Вид ресурса Запас ресурса Число единиц ресурсов, затрачиваемых на изготовление единицы продукции
-
-

 

Прибыль, получаемая от единиц продукции и -соответственно 2 и 3 руб. Необходимо составить такой план производства продукции, при котором прибыль от ее реализации будет максимальной.

Решение. Составим экономико-математическую модель задачи. Пусть и - число единиц продукции и соответственно, запланированных к производству. Для их изготовления потребуется единиц ресурса ; единиц ресурса ; единиц ресурса и единиц ресурса . Так как потребление ресурсов не должно превышать запасов, соответственно 18, 16, 5 и 21 единицы, то связь между потреблением ресурсов и их запасами выразится системой неравенств:

(3)

По смыслу задачи переменные:

(4)

Суммарная прибыль составит руб. от реализации продукции и руб. от реализации продукции , т.е.:

(5)

Таким образом, получили экономико-математическую модель задачи: найти такой план выпуска продукции , удовлетворяющий системе (3) и условию (4), при котором функция (5) принимает максимальное значение.

Задача составления рациона (задача о диете, задача о смесях).Имеются два вида корма I и II, содержащие питательные вещества (витамины) . Содержание числа единиц питательных веществ в 1 кг каждого вида корма и необходимый минимум питательных веществ приведены в таблице 2:

 

Питательное Вещество (витамин) Необходимый минимум питательных веществ Число единиц питательных веществ в 1 кг корма
    I II

 

Стоимость 1 кг корма I и II соответственно равна 4 и 6 руб. Необходимо составить такой дневной рацион, имеющий минимальную стоимость,в котором содержание каждого вида питательных веществ было бы не меньше установленного предела.

Решение. Составим экономико-математическую модель задачи. Пусть и - количество кормов I и II , соответственно, входящих в дневной рацион. Этот рацион будет включать единиц питательного вещества ; единиц питательного вещества ; единиц питательного вещества . Так как содержание питательных веществ , в рационе должно быть не менее, соответственно 9,8, 12 единицы, получим систему неравенств:

(6)

По смыслу задачи переменные:

(7)

Общая стоимость рациона z составит в руб.:

(2)

Таким образом, получили экономико-математическую модель задачи: составить дневной рацион , удовлетворяющий системе (6) и условию (7), при котором функция (2) принимает минимальное значение.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.