Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Зарядовые неустойчивости в приборах с отрицательным дифференциальным сопротивлением



Рассмотрим однородно легированный электронный полупроводник с омическими контактами, к которому приложена разность потенциалов (рис. 8.6). Создаваемое в нем электрическое поле будет E = EП. Пусть вследствие тепловой флуктуации группа электронов сместилась в сторону катода относительно неподвижных ионизованных доноров.

Возникшая избыточная концентрация электронов должна изменяться во времени в соответствии с соотношением:

,(8.13)

представляющим собой закон релаксации основных носителей заряда в полупроводнике.

Если бы в возникшем дипольном домене напряженность электрического поля была меньше EП, то время релаксации Максвелла было бы равно:

.(8.14)

Рис. 8.6. Распределение объемного заряда и напряженности поля в образце при формировании домена сильного поля

На самом деле в области возникшего объемного заряда напряженность поля увеличится и станет больше EП. Следовательно, в выражении для τМ положительную удельную проводимость нужно заменить на удельную отрицательную дифференциальную проводимость , где – отрицательная дифференциальная подвижность, соответствующая участку вольт-амперной характеристики с отрицательной дифференциальной проводимостью. Таким образом,

.(8.15)

Из формул для Δn(t) и τМ следует, что в образце с отрицательной дифференциальной проводимостью первоначальная тепловая флуктуация концентрации электронов должна не убывать с ростом t, а увеличиваться, так как .

Этот факт объясняется следующими обстоятельствами. В области дипольного объемного заряда напряженность электрического поля возрастет и станет больше порогового значения, а в остальной части образца E слегка уменьшится и станет меньше EП, так как напряжение, подаваемое на образец, поддерживается постоянным. В результате этого дрейфовая скорость электронов и плотность тока в области существования объемного заряда уменьшатся, а в остальной части образца изменятся незначительно. Это приведет к дальнейшему увеличению концентрации электронов в левой части объемного заряда (за счет их подтока от катода) и концентрации нескомпенсированных доноров в правой части за счет ухода быстрых электронов от правой границы к аноду. Этот процесс прекратится и дипольный слой достигнет стабильной конфигурации, когда плотность тока внутри и вне его станет одинаковой и будет соответствовать точкам вольт‑амперной характеристики, лежащим вне участка отрицательной дифференциальной проводимости (например, точкам E = EВ и E = EД) (рис. 8.7).

Рис. 8.7. ВАХ диода Ганна [5, 32]

Спад силы тока в цепи при формировании домена сильного поля обусловлен резким уменьшением подвижности электронов в нем и, следовательно, увеличением сопротивления образца. Наиболее стабильное состояние домена соответствует минимальной мощности, потребляемой образцом от источника питания, т.е. когда плотность тока в образце имеет наименьшее возможное значение – Jmin. Тогда максимальная напряженность поля внутри домена сильного поля будет равняться EД, а вне его – EВ. Ширину или толщину домена (dД.М.) можно оценить исходя из того, что падение напряжения на образце до и после образования домена одно и то же, т.е.

,(8.16)

где исходная напряженность поля EИ = EП,

W – длина образца.

.(8.17)

Распределение напряженности электрического поля в домене зависит от концентрации электронов в данном образце. При больших n0 максимум E располагается в центре домена и зависимость E от x имеет симметричный вид. Если n0 мало, то кривая принимает форму, близкую к прямоугольному треугольнику.

В процессе формирования и после его окончания дипольный домен дрейфует от катода к аноду. Если предположить, что домен возникает у катода за счет неоднородности в распределении примеси, то за время пролета

,(8.18)

где – средняя скорость дрейфа домена, домен достигнет анода и исчезнет. После этого в образце восстановится однородное распределение поля и первоначальное (до формирования домена) значение тока. Затем за счет тепловой флуктуации у катода начнет формироваться следующий домен и т.д. Периодически повторяющиеся процессы формирования домена у катода и рассасывания его у анода приведут к соответствующему изменению сопротивления образца и силы тока.

Для того, чтобы первоначальная тепловая флуктуация концентрации электронов заметно возросла, необходим интервал времени, превосходящий τМ. Следовательно, периодическое изменение силы тока через образец будет возникать лишь в том случае, когда или

.(8.19)

Это неравенство называют критерием Кремера [5, 32].

Для арсенида галлия и фосфида индия см-2.

Режим работы диода Ганна на эффекте междолинного перехода электронов, при котором выполняется неравенство

см-2,(8.20)

называется пролетным режимом. Для его реализации необходимо включить диод в параллельную резонансную цепь, например, в СВЧ‑генератор с высокой добротностью, настроенный на пролетную частоту ( ). В пролетном режиме на кривой зависимости тока от времени будут наблюдаться резкие всплески, если длина образца значительно превышает ширину домена (рис. 8.8). Для получения формы колебаний тока, близкой к синусоидальной, необходимо уменьшать длину образца или увеличивать ширину домена. Ширину домена можно увеличить, уменьшая концентрацию электронов (n0) в образце.

Рис. 8.8. Зависимость тока от времени при работе диода Ганна в пролетном режиме

При работе диода в резонаторе к нему кроме постоянного внешнего смещения оказывается приложенным также СВЧ‑поле, возникающее в резонаторе за счет колебаний тока, протекающего через диод. Предположим, что СВЧ‑поле меняется во времени по гармоническому закону, а резонатор настроен на частоту выше пролетной ( ). Тогда при достаточно большой амплитуде СВЧ-поля дипольный домен в образце может рассосаться, не доходя до анода. Для этого необходимо, чтобы в полупериод, когда векторы напряженности постоянного и СВЧ-поля противоположны, суммарная напряженность поля была бы меньше EП, а длительность полупериода была бы больше τМ, соответствующего положительной подвижности. С точностью до численного коэффициента последнее условие можно записать так: , или .(8.21)

Для GaAs и InP с/см3. Полученное неравенство является условием реализации режима работы диода с подавлением домена. В этом режиме в каждый «положительный» полупериод СВЧ‑поля в диоде E > EП и у катода зарождается домен, а в каждый «отрицательный» полупериод он рассасывается на пути к аноду. Таким образом, генерация переменного тока в этом случае происходит на частоте, определяемой параметрами резонансной цепи.

Если обеспечить одновременное выполнение двух неравенств:

,(8.22)

то диод Ганна будет работать в режиме ограниченного накопления объемного заряда (ОНОЗ). Для GaAs и InP с/см3. Поскольку в полученном неравенстве период СВЧ‑сигнала меньше τМ, соответствующего отрицательной дифференциальной подвижности, то в полупериод, когда E > EП, домен сильного поля не успевает полностью сформироваться, а в следующий полупериод (E < EП) он полностью рассасывается. При этом будет наблюдаться возрастание сопротивления образца в один полупериод СВЧ‑сигнала и спад его в другой, что вызывает эффективную генерацию мощности на частоте, определяемой параметрами внешней цепи.

8.5. Генерация СВЧ‑колебаний в диодах Ганна

Как любой генератор СВЧ‑диапазона, генератор Ганна характеризуется генерируемой мощностью, длиной волны, или частотой генерируемых колебаний, коэффициентом полезного действия, уровнем шумов и другими параметрами.

Выходная непрерывная мощность генераторов Ганна в пролетном режиме обычно составляет десятки – сотни милливатт, а при импульсной работе достигает сотен ватт.

Рабочая частота в пролетном режиме обратно пропорциональна длине или толщине высокоомной части кристалла ( ). Связь между генерируемой мощностью и частотой можно представить в виде:

. (8.23)

Мощность генерируемых СВЧ-колебаний зависит от полного сопротивления z или от площади рабочей части высокоомного слоя полупроводника. Приведенное соотношение указывает на то, что ожидаемое изменение мощности с частотой пропорционально .

Верхний предел рабочей частоты диодов Ганна составляет сотни гигагерц (рис. 8.10). Генераторы Ганна из арсенида галлия могут генерировать СВЧ-колебания от 1 до 50 ГГц. Несколько бóльшие частоты получены на генераторах Ганна из фосфида индия в связи с бóльшими значениями максимальных скоростей электронов, но качество приборов из этого материала значительно ниже из-за недостаточной отработки технологии изготовления материала. Преимущество фосфида индия перед арсенидом галлия – большее значение пороговой напряженности электрического поля (10,5 и 3,2 кВ/см соответственно). Это должно позволить создать генератор Ганна с бóльшей выходной мощностью. Для создания бóльших частот генерируемых колебаний представляют интерес тройные соединения GaInSb, так как в них велики дрейфовые скорости электронов.

Рис. 8.10. Примеры характеристик диодов Ганна [33, 35]

Эффект Ганна наблюдается, помимо GaAs и InP, в электронных полупроводниках CdTe, ZnS, InSb, InAs и др., а также в Ge с дырочной проводимостью.

Коэффициент полезного действия генераторов Ганна может быть различным (от 1 до 30 %), так как технологии изготовления приборов и качество исходного полупроводникового материала существенно различаются.

В связи с возможным наличием в кристалле генератора Ганна нескольких неоднородностей зарождение домена может происходить в различные моменты времени на разном расстоянии от анода. Поэтому частота колебаний будет изменяться, т.е. могут возникать частотные шумы. Кроме частотных шумов в генераторах Ганна существуют амплитудные шумы, основной причиной появления которых являются флуктуации в скоростях движения электронов. Обычно амплитудные шумы в генераторах Ганна малы, так как дрейфовая скорость в сильных электрических полях, существующих в этих приборах, насыщена и слабо изменяется при изменении электрического поля.

Важным для практического применения генераторов Ганна является вопрос о возможности их частотной перестройки в достаточно широком диапазоне. Из принципа действия генератора Ганна ясно, что частота его должна слабо зависеть от приложенного напряжения. С увеличением приложенного напряжения несколько возрастает толщина домена, а скорость его движения изменяется незначительно. В результате при изменении напряжения от порогового до пробивного частота колебаний увеличивается всего на десятые доли процента.

Срок службы генераторов Ганна относительно мал, что связано с одновременным воздействием на кристалл полупроводника таких факторов, как сильное электрическое поле и перегрев кристалла из-за выделяющейся в нем мощности.

1. Конструкция, принцип действия МДП-транзисторов.

Физической основой работы полевого транзистора со структурой металл - диэлектрик - полупроводник является эффект поля. Эффект поля состоит в том, что под действием внешнего электрического поля изменяется концентрация свободных носителей заряда в приповерхностной области полупроводника. В полевых приборах со структурой МДП внешнее поле обусловлено приложенным напряжением на металлический электрод - затвор. В зависимости от знака и величины приложенного напряжения присутствуют четыре состояния области пространственного заряда (ОПЗ) полупроводника - обогащение, обеднение, слабая и сильная инверсия. Полевые транзисторы в активном режиме могут работать только в области слабой или сильной инверсии, т.е. в том случае, когда инверсионный канал между истоком и стоком отделен от объема подложки слоем обеднения. На рисунке приведена топология МДП-транзистора, где этот факт наглядно виден.

Полевой транзистор со структурой металл - диэлектрик - полупроводник

В области инверсии концентрация неосновных носителей заряда в канале выше, чем концентрация основных носителей в объеме полупроводника. Изменяя величину напряжения на затворе, можно менять концентрацию свободных носителей в инверсионном канале и тем самым модулировать сопротивление канала. Источник напряжения в стоковой цепи вызовет изменяющийся в соответствии с изменением сопротивления канала ток стока и тем самым будет реализован эффект усиления. Таким образом, МДП-транзистор является сопротивлением, регулируемым внешним напряжением.

2. ВАХ МДП-транзистора в режиме плавного канала.

Рассм. пол. транз. со структурой МДП, схема кот. приведена на рис. 6.2. Коор. z направлена вглубь п/п, y - вдоль по длине канала и х - по ширине кан.. Получим ВАХ такого транз.

Рис. 6.2. Схема МДП-транзистора

Ток в канале МДП-транз., изготовленного на подложке р-типа, обусловлен свободными эл., концентрация которых n(z). Электр. поле Еу обусловлено напряж. между истоком и стоком VDS. Согласно закону Ома, плотность тока

(6.1)

где q - заряд электрона, μn - подвижность электронов в канале, V - падение напр. от истока до точки канала с корд. (x, y, z).

Проинтегрируем (6.1) по ширине (x) и глубине (z) канала. Тогда интеграл в левой части (6.1) дает нам полный ток канала IDS, а для правой части получим:

(6.2)

Вел. - полный заряд эл. в кан. на ед. площ. . Тогда (6.3)

Найдем величину заряда электронов Qn. Для этого запишем уравнение электронейтральности для зарядов в МДП-транзисторе на единицу площади в виде:

(6.4)

Согласно (6.4) заряд на металлическом электроде Qm уравновешивается суммой зарядов свободных электронов Qn и ионизованных акцепторов QB в полупроводнике и встроенного заряда в окисле Qox. На рисунке 6.3 приведена схема расположения этих зарядов. Из определения геометрической емкости окисла Сox следует, что полный заряд на металлической обкладке МДП-конденсатора Qm равен:

(6.5)

где Vox - падение напряжения на окисном слое, Сox - удельная емкость подзатворного диэлектрика.

Поскольку падение напряжения в окисле равно Vox, в полупроводнике равно поверхностному потенциалу ψs, а полное приложенное к затвору напряжение VGS, то

где Δφms - разность работ выхода металл - полупроводник, ψs0 - величина поверхностного потенциала в равновесных условиях, т.е. при напряжении стока VDS = 0.

Рис. 6.3. Расположение зарядов в МДП-транзисторе

Из (6.4), (6.5) и (6.6) следует:

(6.7)

Поскольку в области сильной инверсии при значительном изменении напряжения на затворе VGS величина поверхностного потенциала меняется слабо, будем в дальнейшем считать ее постоянной и равной потенциалу начала области сильной инверсии ψs0 = 2φ0. Поэтому будем также считать, что заряд акцепторов QB не зависит от поверхностного потенциала. Введем пороговое напряжение VТ как напряжение на затворе VGS, соответствующее открытию канала в равновесных условиях: VT ≡ VGS (ψs = 2φ0, VDS = 0).ьПри этом Qn(VDS = 0) = 0.

Из (6.7) следует, что

(6.8)

Тогда с учетом (6.8)

(6.9)

Подставляя (6.9) в (6.3), разделяя переменные и проведя интегрирование вдоль канала при изменении y от 0 до L, а V(y) от 0 до VDS, получаем:

(6.10)

Ур. (6.10) описывает ВАХ пол. транз.а в области плавного канала.

3. ВАХ МДП-транзистора в области отсечки.

Как следует из уравнения , по мере роста напряжения исток сток VDS в канале может наступить такой момент, когда произойдет смыкание канала, т.е. заряд эл. в канале в некоторой точке станет равным нулю. Это соот. условию:

(6.11)

Поскольку максимальная величина напряжения V(y) реализуется на стоке, то смыкание канала, или отсечка, произойдет у стока. Напряжение стока VDS, необходимое для смыкания канала, называется напряжением отсечки VDS*.

Рис. 6.4. Зависимость тока стока IDS от напряжения на стоке VDS для МОП ПТ при различных напряжениях на затворе.

Величина напряжения отсечки определяется соотношением (6.11). На рисунке 6.4 показаны оба состояния - состояние плавного канала и отсеченного кан. С ростом напр. стока VDS точка канала, соответствующая условию отсечки (6.11), сдвигается от стока к истоку. В первом приближении при этом на участке плавного канала от истока до точки отсечки падает одинаковое напряжение VDS* = VGS - VT, не зависящее от напряжения исток сток. Эффективная длина плавного канала L' от истока до точки отсечки слабо отличается от истинной длины канала L и обычно ΔL = L - L'. Это обуславливает в области отсечки в первом приближении ток стока IDS, не зависящий от напряжения стока VDS. Подставив значение напряжения отсечки VDS* из (6.11) в (6.10) вместо значения напряжения стока VDS, получаем для области отсечки выражение для тока стока:

(6.12)

Соотношение (6.12) представляет собой запись ВАХ МДП-транзистора в области отсечки. Зависимости тока стока IDS от напряжения на затворе VGS называются обычно переходными характеристиками (рис. 6.5), а зависимости тока стока IDS от напр. на стоке VDS - проходными хар-ками транз.

 

4. Эффект модуляции длины канала.

При значительных величинах напряжения исток-сток и относительно коротких каналах (L = 10÷20 мкм) в области отсечки наблюдается эффект модуляции длины канала. При этом точка отсечки смещается к истоку и напряжение отсечки VDS* падает на меньшую длину L' канала. Это вызовет увеличение тока IDS канала. Величина напряжения ΔV, падающая на участке ΔL от стока отсечки, будет равна:

(6.13)

Поскольку напряжение ΔV падает на обратносмещенном p-n+ переходе, его ширина ΔL будет равна:

(6.14)

Ток канала равен IDS0, когда напряжение исток-сток VDS = VDS* = VGS - VT равно напряжению отсечки и величина ΔL = 0. Обозначим IDS ток стока при большем напряжении стока: VDS > VDS*. Тогда

(6.15)

Следовательно, ВAX МДП-транзистора с учетом модуляции длины канала примет следующий вид:

(6.16)

Рис. 6.5. Зависимость тока стока IDS от напряжения на затворе VGS в области плавного канала при VDS = 0,1 B - кривая 1; зависимость корня из тока стока IDS1/2 от напряжения на затворе в области отсечки - кривая 2

Эффект модуляции длины канала оказывает большое влияние на проходные характеристики МДП-транзистора с предельно малыми геометрическими размерами.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.