Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Требования к зонной структуре полупроводников



Эффект Ганна наблюдается главным образом в двухдолинных полупроводниках, зона проводимости которых состоит из одной нижней долины и нескольких верхних долин [32, 33].

Для того, чтобы при переходе электронов между долинами возникало отрицательное дифференциальное сопротивление, должны выполняться следующие требования:

· средняя тепловая энергия электронов должна быть значительно меньше энергетического зазора между побочной и нижней долинами зоны проводимости, чтобы при отсутствии приложенного внешнего электрического поля бόльшая часть электронов находилась в нижней долине зоны проводимости;

· эффективные массы и подвижности электронов в нижней и верхних долинах должны быть различны. Электроны нижней долины должны иметь высокую подвижность μ1, малую эффективную массу m1* и низкую плотность состояний. В верхних побочных долинах электроны должны иметь низкую подвижность μ2, большую эффективную массу m2* и высокую плотность состояний;

· энергетический зазор между долинами должен быть меньше, чем ширина запрещенной зоны полупроводника, чтобы лавинный пробой не наступал до перехода электронов в верхние долины.

 

Из изученных и применяемых полупроводниковых материалов перечисленным требованиям наиболее соответствует арсенид галлия n‑типа.

Рассмотрим междолинный переход электронов в арсениде галлия. Приложим к однородному образцу из арсенида галлия электрическое поле. Если напряженность поля в образце мала, то все электроны находятся в нижней долине зоны проводимости (в центре зоны Бриллюэна). Поскольку средняя тепловая энергия электронов значительно меньше энергетического зазора между дном верхней и нижней долин зоны проводимости, они не переходят в верхнюю долину (рис. 8.1).

Рис. 8.1. Схематическая диаграмма, показывающая энергию электрона в зависимости от волнового числа в области минимумов зоны проводимости арсенида галлия n‑типа

Электроны нижней долины имеют малую эффективную массу m1* и высокую подвижность μ1. Плотность тока, протекающего через образец, определяется концентрацией электронов в нижней долине n1 (n1 = n0, где n0 – равновесная концентрация электронов в полупроводнике):

.(8.1)

Увеличим приложенное электрическое поле. С ростом поля возрастает скорость дрейфа электронов. На длине свободного пробега l электроны приобретают энергию eEl, отдавая при столкновениях с фононами кристаллической решетки меньшую энергию. Когда напряженность поля достигает порогового значения EП, появляются электроны, способные переходить в верхнюю долину зоны проводимости.

Дальнейшее увеличение поля приводит к росту концентрации электронов в верхней долине. Переход из нижней долины в верхнюю сопровождается значительным ростом эффективной массы и уменьшением подвижности, что ведет к уменьшению скорости дрейфа. При этом на вольт‑амперной характеристике образца появляется участок с отрицательным дифференциальным сопротивлением (ОДС) (рис. 8.2).

Рис. 8.2. N‑образная вольт‑амперная характеристика: E – электрическое поле, создаваемое приложенной разностью потенциалов; J – плотность тока

Для возникновения отрицательного дифференциального сопротивления необходим одновременный переход большинства электронов из центральной долины в боковую при пороговой напряженности электрического поля (рис. 8.3). Но получить статическую ВАХ, соответствующую сплошной кривой, не удается, так как в кристалле или около невыпрямляющих контактов всегда есть неоднородности, в результате чего возникают локальные напряженности электрического поля, превышающие среднюю напряженность. Превращение в этих местах «легких» электронов в «тяжелые» еще больше увеличивает неоднородность электрического поля. Поэтому практически не получается одновременного перехода большинства электронов в кристалле из центральной долины в боковую и статическая ВАХ остается без участка с ОДС.

Рис. 8.3. Распределение электронов при различных значениях напряженности поля

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.