Для объяснения ВАХ динистора используют двухтранзисторную модель. Из рисунка 7.5 следует, что тиристор можно рассматривать как соединение р‑n‑р транзистора с n‑р‑n транзистором, причем коллектор каждого из них соединен с базой другого. Центральный переход действует как коллектор дырок, инжектируемых переходом П1, и как коллектор электронов, инжектируемых переходом П2.
Рис. 7.5. Двухтранзисторная модель диодного тиристора
Взаимосвязь между токами эмиттера Iэ, коллектора Iк и статическим коэффициентом усиления по току α1р1‑n1‑р2 транзистора и α2n2‑р1‑n1 транзистора следующая. Представляя динистор как два транзистора, запишем следующие соотношения.
Пусть – ток через переход П1. Тогда часть тока , дошедшая до коллекторного перехода П3 , будет равна:
.(7.1)
Если – ток через переход П2, аналогично:
.(7.2)
Учтем еще один фактор – лавинное умножение в переходе П3 через коэффициент лавинного умножения М. Тогда суммарный ток через переход П3 будет равен:
,(7.3)
где IК0 – обратный ток перехода П3 (генерационный и тепловой).
В стационарном случае токи через переходы П1, П2, и П3 равны, тогда
(7.4)
откуда
,(7.5)
где α = α1 + α2 – суммарный коэффициент передачи тока первого (p1‑n1‑p2) и второго (n2‑p2‑n1) транзисторов.
Выражение (7.5) в неявном виде описывает ВАХ диодного тиристора на «закрытом» участке, поскольку коэффициенты М и α зависят от приложенного напряжения VG. По мере роста α и М с ростом VG, когда значение М(α1 + α2) станет равно 1, из уравнения (7.5) следует, что ток I устремится к ∞. Это условие и есть условие переключения тиристора из состояния «закрыто» в состояние «открыто».
Напряжение переключения Uперекл составляет у тиристоров от 20-50 В до 1000-2000 В, а ток переключения Iперекл – от долей микроампера до единиц миллиампера (в зависимости от площади).
Таким образом, в состоянии «закрыто» тиристор должен характеризоваться малыми значениями α и М, а в состоянии «открыто» – большими значениями коэффициентов α и М.
В закрытом состоянии (α – малы) все приложенное напряжение падает на коллекторном переходе П3 и ток тиристора – это ток обратно смещенного p‑n перехода. Энергетическая диаграмма тиристора в состоянии равновесия приведена ранее на рисунке 7.1, а в режиме прямого смещения («+» на слое р1) в закрытом состоянии представлена на рисунке 7.6.
Рис. 7.6. Зонная диаграмма и токи в тиристоре в закрытом состоянии [5]
Если полярность напряжения между анодом и катодом сменить на обратную, то переходы П1 и П3 будут смещены в обратном направлении, а П2 – в прямом. ВАХ тиристора в этом случае будет обычная ВАХ двух обратносмещенных p‑n переходов.