Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Розміщення з повтореннями та без повторень.



2.В останній задачі попереднього пункту ми утворювали впорядковані кортежі довжини три із елементів скінченної п’ятиелементної множини, причому деякі елементи повторювались 2 або 3 рази. Наприклад 112 i 111. В комбінаториці такі кортежі називають розміщеннями з повтореннями із заданих n елементів по k елементів. Число розміщень з повтореннями позначається так: Ãnk. Цей символічний запис читають: число розміщень з повтореннями із n елементів по k. Для визначення числа розміщень з повтореннями приймемо наступні означення та доведемо теорему.

Означення: розміщеннями з повтореннями із елементів n - елементної множини Х по k елементів називають кортежі довжини k, утворені із елементів цієї множини Х i компоненти яких повторюються.

Теорема 1: число розміщень з повтореннями із даних n елементів по k елементів обчислюється за формулою Ãnk=nk.

Доведення:

Розглянемо скінченну множину Х таку, що n(Х)=n. Щоб утворити кортеж довжини k із елементів цієї множини Х, потрібно розглянути декартовий добуток множини Х саму на себе Х×Х×Х×...×Х, який містить k

 
 


k

елементів, бо кожен кортеж довжини k є елементом декартового добутку. Згідно з правилом добутку число елементів цієї множини Х×Х×Х×...×Х дорівнює n(Х×Х×Х×...×Х)=n(Х)×n(Х)×n(Х)×...×n(Х)=n•n•n•...•n=nk.

k k k k

Теорему доведено.

Застосування доведеної теореми проілюструємо на прикладі наступної задачі, подібну до якої ми раніше розв’язали, використовуючи правило добутку.

Задача: скільки п’ятицифрових чисел можна утворити із цифр 1, 2, 3, 4, 5?

Розв’язання.

Оскільки в задачі нічого не говориться про те повторюються чи не повторюються цифри в записі чисел, то будемо вважати, що вони повторюються. Отже, в задачі є п’ятиелементна множина Х={1,2,3,4,5}, де n(Х)=5. Із елементів цієї множини потрібно утворювати впорядковані кортежі довжиною 5, бо нам потрібні п’ятицифрові числа, а, оскільки, цифри можуть повторюватися, то мова йде про розміщення з повтореннями. Отже, будемо використовувати формулу для обчислення числа розміщень з повтореннями, тобто Ãnk=nk. У нашому випадку n(Х)=5, k=5, а тому Ã55=55=3125. Таким чином, число розміщень з повтореннями із 5 елементів по 5 елементів дорівнює 3125.

У комбінаториці крім розміщень з повтореннями розглядаються розміщення без повторень. Для того, щоб навчитися їх обчислювати введемо означення та доведемо відповідну теорему.

Означення: розміщенням із даних n елементів скінченної множини Х по k елементів називаються впорядковані кортежі довжини k, утворені із елементів множини Х, компоненти яких не повторюються.

Число розміщень без повторень символічно позначається Аnk i читається: число розміщень із даних n елементів по k елементів або А із n по k.

Теорема: Число розміщень з n елементів по k дорівнює добутку k послідовних натуральних чисел із яких найбільшим є n.

Символічно сформульована теорема запишеться так: Аnk=n(n-1)(n-2)...(n-k+1)=n!/(n-k)!

Доведення.

Розглянемо скінченну множину Х таку, що n(Х)=n. Будемо утворювати із елементів цієї множини кортежі довжиною k, де k≤n. Оскільки в множині Х є n елементів, то перший компонент кортежу можна вибрати n способами, другий – n-1 способом, третій - n-2 способами, і нарешті k-й – n-(k-1)=n-k+1 – способом. Згідно правила добутку число Аnk таких кортежів довжини k буде дорівнювати n(n-1)(n-2)...(n-k+1). Отже, Аnk=n(n-1)(n-2)...(n-k+1). Теорему доведено.

У математиці добуток всіх послідовних чисел від 1 до деякого числа k прийнято позначати спеціальним символом k! та називати k-факторіал. Наприклад: 3!=1•2•3=6; 5!=1•2•3•4•5=120; 7!=1•2•3•4•5•6•7=5040; k!=1•2•3•...•k. У математиці прийнято вважати, що 0!=1 i 1!=1. Використовуючи ці позначення, спробуємо перетворити формулу для знаходження числа розміщень. У формулі Аnk є добуток всіх натуральних чисел від n до n-k+1, але немає добутку від 1 до n-k. Щоб одержати цей добуток i не змінити значення формули, домножимо й поділимо вираз у правій частині формули на добуток послідовних натуральних чисел від 1 до n-k. Аnk=(n•(n-1)•(n-2)•...•(n-k+1)(n-k)•(n-k-1)•…3•2•1)/((n-k)•(n-k-1)•…3•2•1)= n!/(n-k)!. Це зроблено тому, що в чисельнику є добуток всіх послідовних чисел від 1 до n. Отже, чисельник можна записати як n!. У знаменнику є добуток всіх послідовних натуральних чисел від 1 до n-k, то запишемо його з використанням факторіалу, тобто (n-k)!.

Покажемо застосування виведених формул для обчислення числа розміщень на прикладі наступної задачі.

Задача: скільки двозначних чисел можна записати за допомогою цифр 2, 4, 5, 6, 7 так, щоб цифри не повторювалися?

Розв’язання.

У задачі йдеться про п’ятиелементну множину {2, 4, 5, 6, 7}, із якої слід вибирати кортежі довжини два так, щоб елементи, тобто цифри, не повторювалися. Отже, необхідно обчислити число розміщень без повторень із п’яти елементів по два елемента. Використаємо формулу Аnk=n(n-1)(n-2)...(n-k+1), в якій n=5, k=2. Обчислюємо А52;=5•(5-1)=5•4=20. Таким чином, за допомогою цифр 2, 4, 5, 6, 7 можна записати 20 двозначних чисел так, щоб вони не повторювалися.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.