Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Диз'юнкція двох предикатів.



5.2. Для того, щоб визначити операцію диз’юнкції предикатів, розглянемо на множині абітурієнтів предикати: А(х): „х – склав всі екзамени” і В(х): „х – набрав прохідний бал”. Як можна назвати предикат „х – склав всі екзамени або набрав прохідний бал” - диз'юнкцією заданих предикатів. Отже, приймемо таке означення.

Означення: диз'юнкцією двох предикатів А(х) і В(х), заданих на одній і тій самій множині Х, називається такий новий предикат А(х)ÚВ(х), який визначений на множині Х і який хибний при всіх тих хÎХ, при яких одночасно хибні обидва предикати.

При оперуванні із складенимипредикатами доводиться знаходити їх множини істинності. Знайдемо множину істинності предиката А(х)ÚВ(х). Позначимо область визначення предикатів через Х, множину істинності предиката А(х) через ТА, а множину істинності предиката В(х) – через ТВ. Щоб знайти множину істинності предиката А(х)ÚВ(х), тобто ТАÚВ, на діаграмі Ейлера-Венна зафарбуємо спочатку множину істинності предиката А(х), а потім - множину істинності предиката В(х). Тоді множина істинності предиката А(х)ÚВ(х) буде зображатися тією частиною множини Х, яка зафарбована (див. діаграму № 2.5.).

 

Діаграма № 2.5. Множина істинності диз’юнкції предикатів ТАÚВАÈТВ.

 

Таким чином, множина істинності предиката А(х)ÚВ(х) є об’єднанням множин істинності предикатів А(х) і В(х), тобто справедлива рівність ТАÚВАÈТВ. Операція диз’юнкції предикатів підкоряється тим же самим законам, що і операція диз’юнкції висловлень. Пропонуємо студентам записати відповідні закони самостійно.

6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.

Операція імплікації висловлень.

6.1. Ми вже розглянули три операції над висловленнями та предикатами. Кожній з них, певним чином, відповідали частка не чи сполучники: і, або. У математиці досить часто використовуються словосполучення «якщо …, то …», слова «випливає», «слідує» тощо. Розглянемо два висловлення: а=„число 2 просте” і в=„число 2 – парне”. Утворимо з цих двох простих висловлень за допомогою словосполучення «якщо …, то …» або слова «слідує» нове висловлення: „якщо число 2 – просте, то воно парне” або «із того, що число 2 – просте, слідує (випливає), що воно парне». Воно є складеним (Чому?). У математичній логіці таке нове висловлення називають імплікацією (грецьк. Implico– тісно зв'язую) даних висловлень і позначають так: а→b або аÞb. Символічний запис а→b або аÞb читають так: „якщо а, то b”, або „з а слідує (випливає) b”, або „імплікація а і b”, або „а імплікує в b”. Тепер сформулюємо строге математичне означення цієї операції над висловленнями.

Означення: імплікацією двох висловлень а і b називається таке нове висловлення а→b, яке хибне тоді і тільки тоді, коли висловлення а істинне, а висловлення b – хибне, і істинне в усіх інших випадках.

За допомогою таблиці істинності операцію імплікації можна задати так (див. таблицю №2.7.).

 

а в а→b

Таблиця № 2.7. Таблиця істинності для операції імплікації висловлень.

 

В імплікації а→b висловлення а називають або умовою, або посилкою, або основою імплікації, а висловлення b – висновком або наслідком імплікації. Зв'язок між операцією імплікації та операціями заперечення та диз'юнкції задається за допомогою такої формули: а→b=āÚв.Доведемо її за допомогою таблиці істинності (див. таблицю № 2.8.). Порівнюючи 3 і 5 стовпчики, бачимо, що вони набувають однакових значень істинності при будь-яких наборах значень істинності висловлень а і b.

 

а в а→b ` ā ` ā Úв

Таблиця № 2.8. Доведення формули а→b=āÚв.

 

Розглянемо імплікацію:а→b=„якщо число закінчується на 0, то воно ділиться на 5”.Домовимося називати її даною або прямою імплікацією. Переставивши місцями умову та висновок, одержимо нову імплікацію b→а=„якщо число ділиться на 5, то воно закінчується нулем”. Така імплікація називається оберненою до даної. Замінимо в даній імплікації а→bумову і висновок їх запереченнями. Отримаємо нову імплікацію`ā→b=„якщо число не закінчується на 0, то воно не ділиться на 5”, яку називають імплікацією, протилежною до даної. Поміняємо в останній імплікації місцями умову та висновок. Тоді одержимо імплікацію`в→ā=„якщо число не ділиться на 5, то воно не закінчується нулем”. Цю імплікацію називають імплікацією протилежною до оберненої або оберненою до протилежної. Таким чином, маємо чотири види імплікації: 1) а→b – пряма; 2) b→а – обернена до даної; 3) ā→b - протилежна до прямої; 4)`b→ā - протилежна до оберненої або обернена до протилежної. Виникає запитання: як ці види імплікацій пов’язані між собою? Для виявлення зв'язку між імплікаціями побудуємо таблицю істинності (див. таблицю № 2.9.).

 

  а   в   `а   `b   а →b   b→а   `а→b   `b →а

Таблиця № 2.9. Доведення рівносильності різних видів імплікацій.

 

Аналізуючи побудовану таблицю, бачимо, що значення 5-го і 8-го стовпців приймають однакові значення істинності при всіх наборах значень істинності висловлень, що до них входять. Саме тому можна твердити, що справедливі такі рівності: а→b=b→а та b→а=а→b.Таким чином, маємо дві пари рівносильних між собою імплікаційа→b=b→а та b→а=а→b. Це дає змогу визначати істинність не всіх чотирьох імплікацій, а лише двох (по одній із кожної пари), бо істинність двох інших випливатиме із рівносильності пар імплікацій.

               
       


 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.