Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Малюнок № 1.19. Задання декартового добутку множин за допомогою графа.



 

Властивості 1-7 доводяться за допомогою міркувань. Покажемо це на прикладі останньої властивості. У першій частині доведемо, що кожен елемент лівої частини, яка складається із впорядкованих пар, належить правій частині. Нехай пара (х;у)ÎА´(В\С). Згідно означення декартового добутку це означає, що хÎА і уÎВ\С. Якщо уÎВ\С, то за означенням різниці множин уÎВ і уÏС. Оскільки хÎА і уÎВ, то за означенням декартового добутку множин (х,у)ÎА´В. Оскільки хÎА і уÏС, то (х,у)ÏА´С. Якщо (х,у)ÎА´В і (х,у)ÏА´С, то згідно з означенням операції різниці множин (х,у)Î(А´В)\(А´С), тобто правій частині. Пару (х,у) у лівій частині ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якої пари, що належить лівій частині. Таким чином, множина А´(В\С) є підмножиною множини (А´В)\(А´С), тобто А´(В\С)Ì(А´В)\(А´С). Отже, першу частину доведено.

У другій частині доведемо, що кожен елемент правої частини є елементом лівої. Нехай пара (а;в)Î(А´В)\(А´С). Згідно означення різниці, (а;в)Î(А´В) і (а;в)Ï(А´С). Звідси аÎА і вÏС. Якщо (а;в)Î(А´В), то за означенням декартового добутку множин аÎА і вÎВ. Оскільки вÎВ і вÏС, то за означенням різниці множин вÎВ\С. Якщо аÎА і вÎВ\С, то за означенням декартового добутку множин (а;в)ÎА´(В\С), тобто лівій частині. Пару (а;в) у правій частині ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якої пари, що належить правій частині. Таким чином, множина (А´В)\(А´С) є підмножиною множини А´(В\С), тобто (А´В)\(А´С)ÌА´(В\С). Отже, другу частину доведено.

Таким чином, у першій частині ми довели, що (А´(В\С))Ì((А´В)\(А´С)), а у другій – ((А´В)\(А´С))Ì(А´(В\С)). Звідси на основі означення рівності множин маємо рівність А´(В\С)=(А´В)\(А´С), тобто справедливість властивості доведено повністю.

Спробуємо знайти залежність, яка б допомогла шукати число елементів декартового добутку множин, якщо відомо число елементів вихідних множин. Нехай А={1, 2, 3} і В={а, в}. Утворимо множину А´В={(1;а ), (1;в), (2;в), (3;а), (3;в)}. Легко бачити, що n(А)=3, n(В)=2 і n(А´В)=6, тобто n(А´В)=n(А)·n(В). У математиці для загального випадку доведено теорему: „Число елементів декартового добутку множин А1, А2, А3, ... ,Ак, що мають відповідно n1, n2, n3,...,nk елементів дорівнює добутку чисельностей цих множин, тобто n(А1´А2´А3´…´Ак)=n(А1)n(А2)n(А3)…n(Ак)=n1,n2,n3, ..., nk”.

Як же визначити число елементів об’єднання двох скінченних множин? Для цього доведеться розглядати два випадки: 1) множини А і В не мають спільних множин, тобто АÇВ=Æ; 2) множини А і В мають спільні елементи, тобто АÇВ¹Æ. У першому випадку використовується формула n(АÈВ)=n(А)+n(В), а в другому - n(АÈВ)=n(А)+n(В)–n(АÈВ). Чи можна поширити ці формули на будь-яке число елементів? – математика дає на це ствердну відповідь, тобто справедлива формула: n(А1ÈА2ÈА3È...ÈАк)=n(А1)+n(А2)+n(А3)+...+n(Ак), коли множини попарно не перетинаються.

 

МОДУЛЬ 1: «Множини. Відповідності Відношення.».

Змістовний модуль1.2. «Відповідності та відношення.».

ПЛАН.

1. Поняття відповідності між елементами двох множин, бінарні відповідності, їх позначення та способи задання. Множина відправлення та множина прибуття відповідності. Образи і прообрази елементів і множин, їх позначення.

2. Типи відповідностей (порожня, повна, всюди визначена у множині відправлення, сюр’єктивна, інє’ктивна, функціональна відповідність або функція, відображення, бієктивна). Обернені функції та відображення.

3. Бінарні відношення між елементами однієї множини, способи їхнього задання та їх властивості: рефлексивність, антирефлексивність, симетричність, асиметричність, антисиметричність, транзитивність, антитранзитивність.

4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.

ЛІТЕРАТУРА: [1] –с. 3-40; [2] –с. 11-88; [3] –с. 5-56.

Поняття відповідності між елементами двох множин, бінарні відповідності, їх позначення та способи задання. Множина відправлення та множина прибуття відповідності. Образи і прообрази елементів і множин, їх позначення.

1. Теорія множин вивчає множини та операції над ними. Розглядаючи це не цікавляться, як правило, природою елементів, із яких складається множина, способом задання множин і порядком розміщення елементів у множині. Разом з тим, математична теорія завжди прагне знайти своє застосування до розв’язування практичних задач. Як же це відбувається з теорією множин? – її застосовують до побудови математичних теорій, до розв’язування практичних завдань, розглядаючи множини, між елементами яких існують ті чи інші відношення. Прикладом таких відношень у повсякденному житті є родинні відношення між людьми, відношення на роботі між колегами, в математиці – це відношення паралельності, подільності, рівності тощо.

Слід зазначити, що поняття відповідності, відношення розуміють майже однозначно. Однак таке розуміння носить інтуїтивний, а не точний характер. Для вивчення різноманітних відношень між математичними об’єктами інтуїтивне поняття «відношення» слід уточнити, але так, щоб воно набуло цілком конкретного математичного змісту і в той же час не втратило своєї інтуїтивної сутності. Розглянемо дві скінченні множини Х={2, 4, 6, 8} і У={2, 3}. Утворимо із елементів цих множин впорядковані пари так, щоб перша компонента пари ділилася націло на другу компоненту. Отже, матимемо таку множину пар А={(2;2), (4;2), (6;2), (8;2), (6;3)}. Утворимо тепер декартів добуток множин Х і У: Х×У={(2;2), (2;3), (4;2), (4;3), (6;2), (6;3), (8;2), (8;3)}. Що можна сказати про множини А і Х×У? – множина А є підмножиною множини Х×У, тобто АÌХ×У. Враховуючи це, можна ввести таке означення поняття відношення:

Означення: бінарним відношенням, визначеним між елементами множин Х і У, називається будь-яка підмножина декартового добутку цих множин Х і У.

Означення: відповідністю між множинами Х і У називається трійка множин Х, У і GÌХ×У.

Множину Х називають множиною відправлення або областю визначення відповідності, множину У – множиною прибуття або множиною значень відповідності, а множину впорядкованих пар GÌХ×У, які перебувають у відповідності, - графіком відповідності. Домовилися відповідності позначати малими буквами грецького алфавіту α, β, γ, δ, ε та ін. Символічний запис α={GÌХ×У} означає, що задано відповідність між елементами множин Х і У. Якщо елементи пари (х;у) перебувають у відповідності α, то це позначають так: хαу і читають «елемент у відповідає елементу х у відповідності α». Інколи відповідності позначають і великими буквами латинського алфавіту R, S, T, наприклад: хRу, аSв тощо. Слід зазначити, що уже в початкових класах діти знайомляться з відповідностями та відношеннями. Так, молодші школярі розглядають відношення рівності, більше, менше тощо.

Коли ж відповідність вважається заданою та які способи задання відповідностей існують? – тоді, коли відносно будь-якої пари можна сказати належить чи не належить вона відповідності. Оскільки відповідність є підмножиною декартового добутку множин, то цілком логічно припустити, що відповідності можна задати всіма тими способами, якими задавався декартів добуток множин, а саме: 1) переліком всіх пар елементів, які перебувають у цій відповідності; 2) за допомогою характеристичної властивості; 3) таблицею; 4) рівнянням; 5) графіком; 6) графом. Не всі вказані способи задання відповідностей рівнозначні, а найзручнішим буде той, який потрібен саме для конкретної відповідності (пропонуємо виконати завдання № 38 для самостійної роботи!).

Отже, виникає запитання «чи однакові всі відповідності та як виділяти в них різні типи?». Перед тим, як знайти відповіді на ці запитання, розглянемо питання про образи та прообрази елементів у відповідності.

Означення: образом елемента аєА у відповідності αÌА×В називають множину тих елементів вєВ, для яких (а;в)єα.

Означення: прообразом елемента вєВ у відповідності αÌА×В називають множину тих елементів аєА, для яких (а;в)єα.

Домовилися образ елемента аєА у відповідності αÌА×В позначати α(а). Прообраз елемента вєВ при цій же відповідності αÌА×В будемо позначати так: α-1(а). Нехай відповідність задана графом (див. малюнок № 1.20.).

Користуючись малюнком, знайдемо образи і прообрази елементів, які перебувають у відповідності, заданій графом. α(1)={4, 8}, α(2)=Ø, α(3)={2, 4}, α(4)={2, 6, 8}, α(5)={4}, α-1(2)={2, 3, 4}, α-1(4)={2, 4, 5}, α-1(6)= Ø, α-1(8)={1, 4}. Із наведеного прикладу видно, що не всі елементи множини А мають образи у множині В. Так само як і не всі елементи множини В мають прообрази у множині А. враховуючи попереднє зауваження із базових множин А і В можна виділити дві підмножини: 1) підмножину α(А)={в/вєВ і існує таке аєА, що аαв}. Її називають множиною значень відповідності α і позначають α(А)ÌВ; 2) підмножину α-1(В)={а/аєА і існує таке вєВ, що аαв}. Цю множину називають областю визначення відповідності α і позначають α-1(В)ÌА. Таким чином, множина значень відповідності α(А) є об’єднанням образів всіх елементів множини А, а область визначення відповідності α-1(В) є об’єднанням прообразів усіх елементів множини В.

 




©2015 studopedya.ru Все права принадлежат авторам размещенных материалов.