Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ АЛЮМИНИЯ



Алюминий получают путем электролиза глинозема, растворен­ного в расплавленном электролите, основным компонентом


которого является криолит. В чистом криолите Na3AlF6(3NaF • A1F3) отношение NaF: AlF3 равно 3, для экономии электроэнергии необходимо при электролизе иметь это отношение в пределах 2,6-2,8, поэтому к криолиту добавляют фтористый алюминий A1F3. Кроме того, для сниже­ния температуры плавления в электролит добавляют немного CaF2, MgF2 и иногда NaCl. Содержание основных компонентов в промышленном электролите находится в следующих преде­лах, %: Na3AlF6 75-90; AlF3 5-12; MgF2 2-5; CaF2 2-4; Al203 2-10. При повышении содержания А12Оэ более 10% резко повышается тугоплавкость электролита, при содержа­нии менее 1,3% нарушается нормальный режим электролиза.

Электролизная ванна или электролизер, где проводят электролиз, имеет в плане прямоугольную форму. Схема поперечного разреза ванны показана на рис. 247. Кожух 1 из стальных листов охватывает стены ванны, а у больших ванн выполнен с днищем. Внутри имеется слой шамота 2 и далее стены выложены угольными плитами 4, а под образован подовыми угольными блоками 3. Ванна глубиной 0,5—0,6 м заполнена электролитом и находящимся под ним слоем жидко­го алюминия.

Угольный анод 6 (иногда их несколько) подвешен на стальных стержнях 8 так, что его нижний конец погружен в электролит, через стержни 8 к аноду подается ток от шин 7

8 Электролит 9

Мощность электролизера (ванны), определяемая силой подводимого к ней тока, изменяется от 30 кА у ванн малой мощности до 250 кА у ванн большой мощности. Поскольку допустимая удельная плотность проходящего через анод тока составляет 0,65-1,0 А/см2, при росте мощности ванн увели-

Рис. 247. Схема электролизной
ванны для получения алюминия:
/ — кожух; 2 — шамот; 3 — уголь­
ный блок; 4 — угольная плита; 5 —
глинозем; 6 — анод; 7 — токопод-
водящая шина; 8 — подвеска (токо-
подвод); 9 — корка затвердевшего
электролита; 10 — гарнисаж

(затвердевший электролит); 11 — токоподвод


 




чивают площадь анода; размеры поперечного сечения анода мощных ванн достигают 2,8x9 м, размеры ванны (внутри) — 3,8x10 м.

Существующие ванны различаются мощностью и устройством анода: ванны с одним самообжигающимся анодом и верхним токоподводом, с таким же анодом и боковым токоподводом и ванны с анодом из обожженных блоков. Ванна с самообжигаю­щимся анодом и верхним подводом тока показана на рис. 248, а. Анод прямоугольного сечения является непре-рывнонаращиваемым. Его кожух сделан из стального листа, в кожух сверху загружают брикеты из углеродистой элект­родной массы (нефтяной кокс с каменноугольным пеком). Вверху масса плавится, а в нижней части кожуха, где высо­кие температуры, она спекается, коксуется и превращается в твердый блок. В него запекаются погруженные в электрод­ную массу на разную глубину стальные штыри 7, расположен­ные в два—четыре ряда вдоль ванны. Эти стержни служат для подвода тока к аноду и для его удержания над ванной, ко­жух анода крепится над ванной отдельно. В процессе сгора­ния анода наиболее глубоко расположенные штыри поочередно выдергивают из затвердевшей массы и закрепляют на более высоком уровне, через некоторое время они спекаются с твердеющей массой.

По мере сгорания нижней части анода его с помощью спе­циального механизма опускают, при этом анод скользит

Рис. 248. Алюминиевые электролизеры (а — q самообжигающимся анодом и верх­ним токоподводом; б — с обожженным анодом):

/ — токоподводящий стержень; 2 — подовые блоки; 3 — газоулавливающий коло­кол; 4 — кожух анода; 5 — жидкая анодная масса; 6 — шины; 7 — штырь; 8 — спеченный анод; 9 — ниппель; 10 — газосборник; 11 — штанга; 12 — анодный блок


внутри кожуха вниз. К нижней части кожуха анода крепится газосборный колокол, предназначенный для улавливания выделяющихся вокруг анода газов.

Электролизные ванны с предварительно обожженными ано­дами (рис. 248, б) имеют анодный узел, составленный из нескольких (до 20 и более) угольных или графитированных блоков, расположенных в два ряда. В каждом блоке закреп­лены четыре стальных ниппеля 9, соединенных со штангой 11; это устройство служит для подвода тока и для подвески блока. Сгоревшие блоки заменяют новыми. Над ванной уста­новлен газоулавливающий короб.

Использование обожженных анодов позволило увеличить единичную мощность ванн и сильно сократить выделение вредных канцерогенных веществ, которые образуются при коксовании пека самообжигающихся электродов.

Электролизные ванны размещают в цехе в ряд— по несколько десятков ванн в ряду.

Электролиз ведут при напряжении 4—4,3 В и, как отмеча­лось, при удельной плотности тока, проходящего через анод, равной 0,65—1,0 А/см2. Толщина слоя электролита в ванне составляет 150—250 мм. Температуру ванны поддержи­вают в пределах 950—970 °С за счет тепла, выделяющегося при прохождении постоянного хока через электролит. Такие температуры имеют место под анодом, а на границе с возду­хом образуется корка затвердевшего электролита рис. 247, 9, а у стен ванны — затвердевший слой электролита 10 (гарнисаж).

Необходимая температура ванны, т.е. выделение в слое электролита необходимого количества тепла, обеспечивается при определенном электросопротивлении слоя электролита. Такого электросопротивления достигают, поддерживая в заданных пределах состав электролита и толщину его токо-проводящего слоя, т.е. расстояния между анодом и слоем жидкого алюминия в пределах 40—60 мм (увеличение, напри­мер, этого расстояния, т.е. электросопротивления слоя электролита, вызывает увеличение выделения тепла при про­хождении тока и, соответственно, перегрев электролита).

При приложении напряжения к катоду и аноду составляю­щие жидкого электролита подвергаются электролитической диссоциации, и расплав состоит из многочисленных катионов и анионов. Состав электролита подобран так, что в соот-


 




ветствии со значениями потенциалов разряда на электродах могут разряжаться только катионы А13+ и анионы О2-, обра­зующиеся при диссоциации Al203 в электролите. Соответст­венно электрохимический процесс на электродах описывается следующими уравнениями:

2А1; ■ ЗО.

на катоде 2А13+ + бе

на аноде ЗО2-бе

Разряжающийся на катоде алюминий накапливается на подине ванны под слоем электролита. Выделяющийся на аноде кисло­род взаимодействует с углеродом анода с образованием га­зов СО и С02, т.е. при этом окисляется низ анода, в связи с чем анод периодически опускают. Газы СО и С02 выходят из-под анодов вдоль их боковых поверхностей, они содержат выделяющиеся из электролита токсичные фтористые соедине­ния и глиноземную пыль (из самообжигающихся анодов в них также попадают вредные смолистые возгоны); эти газы улав­ливают и очищают от пыли и фтористых соединений.

По ходу процесса в ванны периодически загружают глино­зем; контролируют состав электролита, вводя корректирую­щие добавки; с помощью регуляторов поддерживают оптималь­ное расстояние между анодами и жидким алюминием (в преде­лах 40—50 мм). Глинозем загружают в ванны сверху, проби­вая для этого корку спекшегося электролита (рис. 247, 9) с помощью передвигающихся вдоль ванн машин.

Жидкий алюминий извлекают из ванн один раз в сутки или через 2—3 сут с помощью вакуум-ковшей. Вакуум-ковш пред­ставляет собой (рис. 249) вмещающую 1,5—5 т алюминия

Рис. 249. Вакуум-ковш для извле­чения алюминия:

tggggggz

1 — кожух; 2 — сливной носок; 3 — патрубок для подсоединения ва­куумного насоса; 4 — люк; 5 — крышка; 6 — заборный патрубок; 7 — футеровка


футерованную шамотом емкость, в которой создается разря­жение ~ 70 кПа. Соединенную с патрубком 6 ковша заборную трубку погружают сверху в слой жидкого алюминия в ванне и за счет разрежения алюминий засасывается в ковш.

Выделяющиеся анодные газы вначале направляют в горел­ки, где сжигают СО и возгоны смолы, а затем в газоочист­ку, где улавливают пыль и фтористые соединения.

Производительность современных электролизных ванн сос­тавляет 500—1200 кг алюминия в сутки. Для получения 1 т алюминия расходуется ~ 1,95 т глинозема, ~ 25 кг криоли­та, 25 кг фтористого алюминия, 0,5—0,6 т анодной массы, 14—16 МВт • ч электроэнергии.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.