Алюминий обладает многими ценными свойствами: небольшой плотностью — около 2,7 г/см3, высокой теплопроводностью — около 300 Вт/(м ■ К) и высокой электропроводностью 13,8 • 107 Ом/м, хорошей пластичностью и достаточной механической прочностью.
Алюминий образует сплавы со многими элементами. В сплавах алюминий сохраняет свои свойства. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.
Сродство алюминия к кислороду очень большое. При его окислении выделяется большое количество тепла (~ 1670000Дж/моль). Тонкоизмельченный алюминий при: нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищается от окисления этой пленкой и в расплавленном состоянии.
Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.
В состав дюралюминия, кроме алюминия, входят 3,4-4% Си, 0,5% Мп и 0,5% Mg, допускается не более 0,8% Fe и 0,8% Si. ^Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см3).
Механические свойства этого сплава повышаются после термической обработки и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147—216 МПа до 353— 412 МПа, а твердость по Бринелю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18—24 %).
Силумины— литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами.
Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетике и электронике. Многие части искусственных спутников нашей планеты и космических кораблей изготовлены из алюминия и его сплавов.
Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого
алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).
По общему производству металла в мире алюминий занимает второе место! после железа.
СЫРЫЕ МАТЕРИАЛЫ
Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая - эти получение глинозема (А1203) из рудного сырья и вторая— получение жидкого алюминия из глинозема путем электролиза.
Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд А1203, гиббсит А12Оэ • ЗН20, бемит А12Оэ • Н20, кианит ЗА1203 • 2Si02, нефелин (Na, K)20 • • А1203 ■ 2Si02, каолинит А12Оэ • 2Si02* 2H20 и другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.
Бокситы. Алюминий в бокситах находится главным образом в виде гидроксидов алюминия (гиббсита, бемита и др.), корунда и каолинита. Химический состав бокситов довольно сложен. Они часто содержат более 40 химических элементов. Содержание глинозема в них составляет 35—60%, кремнезема 2-20%, оксида Fe203 2-40%, окиси титана 0,01-10%. Важной характеристикой бокситов является отношение содержаний в них А1203 к Si02 по массе — так называемый кремневый модуль.
Кремневый модуль бокситов, поступающих для получения глинозема, должен быть не ниже 2,6. Для бокситов среднего качества этот модуль составляет 5—7 при 46-48 %тном содержании А1203, а модуль высококачественных — около 10 при 50 %-ном содержании А1203. Бокситы с более высоким содержанием А12Оэ (52%) и модулем (10-12) идут для производства электрокорунда.
К числу крупных месторождений бокситов в нашей стране относится Тихвинское (Ленинградская область), Североуральское (Свердловская область), Южноуральское (Челябинская область), Тургайское и Краснооктябрьское (Кустанай-ская область).
Нефелины входят в состав нефелиновых сиенитов и урти-тов. Большое месторождение уртитов находится на Кольском
полуострове. Основные компоненты уртита — нефелин и апа тит ЗСа3(Р04)2 • CaF2. Их подвергают флотационному обогащению с выделением нефелинового и апатитового концентратов. Апатитовый концентрат идет для приготовления фосфорных удобрений, а нефелиновый - для получения глинозема. Нефелиновый концентрат содержит, %: 20-30 А1203, 42-44 Si02, 13-14 NazO, 6-7 K20, 3-4 Fe203 и 2-3 CaO.
Алуниты представляют собой основной сульфат алюминия и калия (или натрия) K2SO„ • Al2(S04)3 • 4А1(ОН)3. Содержание Al203 в них невысокое (20-22%), но в, них находятся другие ценные составляющие: серный ангидрид S03 (~20%) и щелочь Na20 • К20 (4-5 %). Таким образом, они, так же как и нефелины, представляют собой комплексное сырье.
Другие сырые материалы. При производстве глинозема применяют щелочь NaOH, иногда известняк СаСОэ, при электролизе глинозема криолит Na3AlF6 (3NaF • A1F3) и немного фтористого алюминия A1F3, а также CaF2 и MgF2.
Производство криолита. Криолит в естественном виде в природе встречается очень редко и его производят искусственно из концентрата плавикового шпата (CaF2). Процесс осуществляют в две стадии, первая — это получение плавиковой кислоты HF. Тонкоизмельченный CaF2 смешивают с серной кислотой в трубчатых вращающихся печах при 200 °С. В печи протекает реакция: CaF2+H2S04=2HF+CaSO„. Поскольку в плавиковом шпате содержится в качестве примеси Si02, образуется также немного летучей кремнефтористой кислоты H2SiF6. Газообразные HF и H2SiF6 после их очистки от примесей поглощаются в вертикальных башнях водой, в результате получают раствор плавиковой кислоты с кремнефтористой. Его очищают от H2SiF6, добавляя немного соды: H2SiF6+Na2C03=Na2SiF6+H2O+CO2. Кремнефтористый натрий выпадает в осадок и получается очищенная плавиковая кислота. Вторая стадия — получение криолита. В раствор плавиковой кислоты добавляют А1(ОН)3 и соду и проводят так называемый процесс варки криолита, в течение которого протекают следующие реакции:
6HF + А1(ОН)3 = H3A1F6 + ЗН20
2H3A1F6 + 3Na2C03 = 2Na3AlF6 + 3C02 + 3H20.
Криолит выпадает в осадок, его отфильтровывают и просушивают при температуре 130—150 °С.
Фтористый алюминий получают схожим способом, добавляя к плавиковой кислоте до полной ее нейтрализации гидроксид алюминия: 3HF + Al(OH)3 = AlF3 + ЗН20.