Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

ИЗ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД



Никель из сульфидных медно-никелевых руд получают по тех­нологии, сходной с технологией пирометаллургического про­изводства меди из медных сульфидных руд. При этом допол­нительно после получения медно-никелевого штейна произво­дят разделение содержащихся в нем никеля и меди. Техноло­гия включает стадии: подготовка руд, плавка на штейн, конвертирование штейна с получением медно-никелевого файнштейна, разделение никеля и меди файнштейна, окисли­тельный обжиг никелевого концентрата с получением NiO, восстановительная плавка монооксида никеля с получением никелевых анодов, электролитическое рафинирование никеля.


Подготовка руд. Богатые руды с содержанием > 1,5 % Ni плавят без обогащения, а остальные руды подвергают обога­щению методом флотации. Далее медно-никелевый концентрат подвергают окускованию путем агломерации или окомкования, включающего окислительный обжиг.

Плавка на штейн. Выплавку медно-никелевого штейна в разных странах производят в шахтных, отражательных и руднотермических печах; начинают также применять автоген­ные процессы. В нашей стране штейн из сульфидных медно-никелевых руд выплавляют в основном в дуговых руднотерми­ческих печах. Печи закрытые, прямоугольной формы с пло­щадью пода 58—168 м2 и тремя или шестью расположенными в линию самоспекающимися электродами; в печи протекают те же процессы, что и при выплавке в подобных печах медного штейна (см. п. 2 § 3 2-ой главы).

Выпуск штейна и шлака из печи производят раздельно че­рез шпуры. Штейн обычно содержит, %: Ni 7—16; Си 7—12; Со 0,3—0,5; Fe 47—55; S 23—27; никель и медь находятся в штейне в виде Ni3S2, Cu2S и немного в виде металлической фазы.

Конвертирование медно-никелевого штейна — его продувку воздухом — осуществляют в горизонтальных конвертерах вместимостью 70—100 т, схожих с конвертерами для конвер­тирования медных штейнов (см. рис. 241).

В процессе продувки окисляется сульфид железа FeS с образованием S02 и FeO, последний оксид ошлаковывается добавляемым в конвертер кварцем (Si02). Продувку заканчи­вают после получения файнштейна, содержащего, %: Ni 35— 42; Си 25-30; Со 0,7-1,3; Fe 3-4; S 23-24. Он содержит также металлы платиновой группы и немного других ценных элементов (Au, Ag, Те, Se). Для того, чтобы предотвратить окисление кобальта, продувку заканчивают тогда, когда в штейне еще остается немного железа (железо обладает боль­шим химическим сродством к кислороду и в присутствии же­леза кобальт почти не окисляется). Никель и медь в файн-штейне находятся в виде тех же фаз, что и в исходном штейне.

Разделение никеля и меди, содержащихся в файнштейне, наиболее часто осуществляют флотационным способом. Пред­назначенный для флотации штейн подвергают очень медлен­ному охлаждению и кристаллизации (в течение 40—80 ч), в


 




этом случае в затвердевшем штейне формируются обособлен­ные кристаллы Ni3S2, Cu2S и металлического сплава, что облегчает разделение этих фаз. Затем файнштейн измельчают и подвергают флотации в сильно щелочной среде. Вместе с пеной всплывает медный концентрат, содержащий 68—73% Си, его направляют в медноое производство. В осадке ("хвос­тах" флотации) остается никелевый концентрат, включающий металлическую фазу файнштейна. Он содержит, %: Ni 68—72; Си 3-4; Со до 1; Fe 2-3; S 22-23 и большую часть ценных элементов файнштейна.

Окислительный обжиг никелевого концентрата. Флотацион­ные никелевые концентраты подвергают окислительному обжи­гу с целью получения NiO. Обжиг ведут в печах кипящего слоя, схожих с показанной на рис. 243; процесс является автогенным, воздух" иногда обогащают кислородом, поддержи­вая температуру процесса в пределах 1100—1200 °С. Основ­ными реакциями являются окисление никеля и серы сульфида Ni3S2 и образование при этом NiO и S02.

Горячий оксид никеля (огарок) из печи кипящего слоя выпускают в трубчатый реактор, куда добавляют кокс, обес­печивающий восстановление части NiO, что уменьшает расход электроэнергии при последующей плавке на черновой никель.

Восстановительная плавка монооксида никеля. Монооксид никеля подвергают восстановительной плавке по технологии, близкой к переработке никелевого файнштейна на огневой никель (см. § 3) с тем отличием, что в печи не наводят шлак для удаления в него серы. Полученный в печи жидкий черновой никель разливают на карусельной разливочной ма­шине в плоские слитки — аноды массой ~ 300 кг. Анодный никель сожержит 88-92 % Ni и 11-17 видов примесей (эле­менты, содержавшиеся в файнштейне, и некоторые оксиды и сульфиды).

Электролитическое рафинирование никеля. Цель электро­литического рафинирования — получение из анодов катодного никеля чистотой * 99,93 % и попутное извлечение ценных примесей— Со, Au, Ag, Se, Те, Си и платиноидов. Отделе­ние никеля от примесей электролизом труднее, чем отделе­ние меди, поскольку никель является электроотрицательным элементом и на катоде, без принятия специальных мер, наряду с ним будут разряжаться (осаждаться) Си, Fe, Co, Zn и Н2.


Электролиз ведут в ваннах ящичного типа, облицованных кислотоупорными материалами. В ваннах попеременно навеши­вают аноды чернового никеля и катоды из чистого никеля. Чтобы исключить осаждение на катоде других элементов, каждый катод помещают в мешок (диафрагму) из синтетичес­ких тканей, пропускающих электролит, его составляют из сульфатов никеля и натрия, хлорида никеля и добавки бор­ной кислоты.

Процесс электролиза заключается в растворении анода и осаждении никеля на катоде. Из анода в электролит пере­ходят примеси никеля, поэтому этот загрязненный электро­лит (анолит) непрерыно выводят из ванны и очищают от ме­ди, железа, кобальта и других примесей, после чего чистый электролит (католит) заливают в диафрагмы. Уровень като-лита в диафрагме (мешке) поддерживают на 30—40 мм выше уровня электролита во всей ванне, поэтому католит под действием ферростатического давления проходит через поры диафрагмы в ванну, не позволяя тем самым проникать загрязненному анолиту в катодное пространство.

Растворение анодов длится 15—22 сут, наращивание като­дов 2-4 сут, расход электроэнергии равен 2400— 3300 кВт • ч на 1т никеля. Благородные металлы и другие нерастворимые примеси выпадают в ванне в шлам, из которо­го затем извлекают ценные элементы.

Получаемый катодный никель содержит более 99,93— 99,99% Ni.

Гл а в а 4. МЕТАЛЛУРГИЯ АЛЮМИНИЯ

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.