Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Определения, теоремы, выводы



Ø Считают, что отрезок х состоит из отрезков х1, х2,..., хп, если он является их объединением и никакие два из них не имеют общих внутренних точек, хотя и могут иметь общие концы.

Ø Если отрезок х состоит из а отрезков, каждый из которых равен единичному отрезку е, то число а называют численным значением длины Х данного отрезка при единице длины Е.

Ø Пишут: Х = а × Е или а = mЕ (Х).

Ø натуральное число как результат измерения длины отрезка (или как мера длины отрезка) показывает, из скольких единичных отрезков состоит отрезок, длина ко­торого измеряется.

Ø При выбранной единице длины Е это число единственное.

Ø Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков у и z выражаются натуральными числами, то мера длины отрезка х равна сумме мер длин его частей.

Ø Теорема. Если отрезок х состоит из отрезков у и z и длины отрезков х и у выражаются натуральными числами, то мера длины отрезка z равна разности мер длин отрезков х и у.

Ø Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е состоит из b отрезков, длина которых равна Е1, то мера длины отрезка х при единице длины Е, равна а× b.

Ø Теорема. Если отрезок х состоит из а отрезков, длина которых равна Е, а отрезок длины Е1 состоит из b отрезков длины Е, то мера длины отрезка х при единице длины Е1 равна а: b.

Ø Измерение величины позволяет переходить от сравнения величин к сравнению чисел, от действий над величинами к соответствующим действиям над числами, и наоборот.

Практическая часть

1. Какой смысл имеет натуральное число 7, если оно получено в результате измерения: а) длины отрезка; б) площади фигуры; в) массы тела?

2. Верно ли, что при увеличении единичного отрезка в k раз соответствующие численные значения длин отрезка уменьшаются во столько же раз?

3. Объясните, почему следующие задачи решаются при помощи сложения:

а) Когда из ящика взяли 4 кг яблок, то в нем осталось 6 кг. Сколь­ко килограммов яблок было в ящике первоначально?

б) На пошив кофты израсходовали 2 м ткани, а на платье на 3 м больше. Сколько метров ткани израсходовали на платье?

4. Объясните, почему следующие задачи решаются при помощи вычитания:

а) От ленты длиной 5 м отрезали 2 м. Сколько метров ленты осталось?

б) С первого участка собрали 10 мешков картофеля, а со второго на 3 мешка меньше. Сколько мешков картофеля собрали со второго участка?

5. Обоснуйте выбор действий при решении следующих задач:

а) Мама купила 5 кг огурцов, 2 кг свеклы и помидоры. Сколько килограммов помидоров купила мама, если масса всех овощей 12 кг?

б) На одной полке 30 книг, на другой на 7 книг меньше. Сколько книг на двух полках?

в) От проволоки длиной 15 дм отрезали сначала 2 дм, а потом еще 4дм. Сколько дециметров проволоки осталось?

г) За лето первоклассники собрали 8 кг лекарственных трав, второклассники на 4 кг больше первоклассников, а третьеклассники на 3кг меньше второклассников. Сколько килограммов лекарственных трав собрали третьеклассники?

6. Объясните различными способами, почему следующие задачи решаются при помощи умножения:

а) В одной корзине 5 кг яблок. Сколько килограммов яблок в трех таких корзинах?

б) За один день Саша прочитывает 4 страницы книги. Сколько страниц в книге, если Саша прочитал ее за 6 дней.

7. Объясните различными способами, почему следующие задачи решаются при помощи деления:

а) 8 кг варенья надо разложить в банки по 2 кг в каждую. Сколько получится банок?

б) На садовом участке посадили 15 кустов смородины по 5 кустов в каждом ряду. Сколько было рядов?

8. Обоснуйте выбор действий при решении следующих задач:

а) С трех овец настригли 18 кг шерсти. Сколько шерсти можно получить с 5 таких овец?

б) В пятиэтажном доме 80 квартир. На каждом этаже в подъезде и 4 квартиры. Сколько подъездов в этом доме?

Творческие задания

Решите задачи и выполните проверку решения. Какие величины рассматривались в задачах?

1. Экспедиция высадилась на Северном полюсе 21 мая 1937 года. Какого числа закончилась работа станции “Северный полюс-1”, если исторический дрейф продолжался 8 месяцев и 29 дней?

2. Первое кругосветное путешествие закончилось 6 сентября 1522 года и продолжалось 2 года 11 месяцев 17 дней. Определите дату отплытия Магеллана из Сен-Лукара (морской порт Севильи).

3. Старейшие российские университеты - Московский и Ленинградский были основаны 11 января 1755 года и 8 февраля 1819 года. Сколько времени прошло между основаниями Московского и Ленинградского университетов? Сколько времени существует каждый из этих университетов?

4. В хозяйстве под гречиху и овес отвели 700 га, причем площадь, отведенная под овес, была на 60 га больше площади, отведенной под гречиху. Сколько гектаров было отведено под овес и сколько под гречиху?

5. Прямоугольный участок с периметром 900 м и отношением длин сторон 1:8 занят под чайную плантацию. С 1 га снимали 50 кг чайного листа. Выход готового чая составляет четвертую часть массы чайного листа. Сколько 50-граммовых пачек чая и на какую сумму получится с чайного листа, собранного с этого участка, если пачка чая стоит 40 коп.?

6. Из 6 кг свекловицы получается 600 г сахара рафинада. Сколько сахара получится из 500 кг свекловицы?

7. Делая в среднем по 42 км/час., поезд прошел расстояние между городами за 30 часов. С какой скоростью должен идти поезд, чтобы пройти это же расстояние за 24 часа?

8. За 125 кВт/час. электроэнергии уплатили 25 грн. Сколько надо уплатить за 75 кВт/час. электроэнергии?

9. 36 рабочих закончили работу за 20 дней, работая по 8 часов в день. За сколько дней 40 рабочих выполнят ту же работу, работая по 6 часов в день?

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.