Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Тема 6. Средние величины и Показатели вариации



Сущность средних величин и их значение в статистическом анализе.

 

Средней величиной является обобщающая характеристика большого количества индивидуальных значений варьирующего признака. Средняя величина – то общее, что характерно для всей совокупности, но исключает те отличия, которые наблюдаются у отдельных единиц как бы взаимно погашая их. Средние величины должны определятся не для всех совокупностей, а только для тех, которые являются однородными. Средние величины, полученные для неоднородных совокупностей не только не имеют ценностей, но даже могут принести вред искажая истинный характер общественного явления. Таким образом, в статистике средней величиной является обобщающий показателей, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности.

Значение средней величины в следующем: их используют для оценки результатов использования научных разработок в производстве, в социальной жизни, а также в изыскании скрытых и неиспользованных резервов.

 


Виды средних величин.

 

1. Средняя арифметическая величина.

 

Самым распространенным видом расчета средней величины является определение средней арифметической.

 

Пример.

 

5 рабочих токарей делают одинаковые детали за смену: первый – 12

второй – 9

третий – 11

четвертый – 13

пятый – 15

Определить среднюю производительность.

Всего – 60.

Производительность – 12= 60/5

 

В этом случае производятся вычисления по формуле средней арифметической простой

 

где – средняя варианта;

х – варианта;

n – число единиц совокупности несгруппированного ряда.

 

Данная формула применяется в том случае, если в исходных данных значение каждого варианта встречается один раз. Если же значение вариант (х) встречается по несколько раз, т.е. имеет место частота, то расчет средней арифметической производится по формуле средней арифметической взвешенной

 

где х – варианта;

- частота.

 

Пример.

 

Определить среднюю грузоподъемность одного крана, если имеется:

 

 

Число кранов ( ) Грузоподъемность тонн (х)
Итого 10  

 

 

Средние арифметические применяются в тех случаях, когда общий объем варьирующего признака для всей совокупности образуется как сумма значений признаков отдельных ее единиц. При расчетах средней арифметической выделяются ее основные свойства:

 

- среднее от постоянной величины равна ей самой:

- произведение средней на сумму частот равно сумме произведений вариант на частоты:

- изменение каждого варианта на одну и туже величину изменяет среднюю величину на эту же величину:

- изменение каждого варианта на одно и тоже число изменяет среднюю во столько же раз:

 

 

- изменение каждой частоты в одно и тоже число раз не изменяет величину средней:

- алгебраическая сумма отклонений всех вариантов от средней равна 0:

 

 

Определение средней арифметической по данным интервального вариационного ряда происходит следующим образом, – для каждого ряда определяется среднее значение интервала как полусумма его нижнего и верхнего значения вариант, а далее расчет ведется по формуле средней арифметической взвешенной.

Пример.

 

Распределение рабочих цеха по производительности

Производительность.шт. Среднее значение xi Количество рабочих fi
0-5 2,5
5-10 7,5
10-15
15-20 17,5
20 и более 22,5
Всего:  

 

 

(лет)

 

2. Средняя гармоническая величина.

 

Это величина обратная среднеарифметической. Она применяется, когда известны отдельные значения варьирующего признака и вся совокупность признаков, а частоты неизвестны.

 

Существует два вида среднегармонической:

 

Средняя гармоническаяпростая определяется:

где n – число единиц совокупности для несгруппированного ряда;

– варианта.

 

Пример.

 

Скорость по течению реки 60 км/ч., против течения – 40 км/ч. Определить среднюю скорость движения.

Весь путь S=1, но тем не менее путь проходят дважды, то S=2, V1=60 км/ч., V2=40 км/ч., тогда средняя скорость движения:

 

 

Средняя гармоническаявзвешенная определяется:

 

;

 

Пример.

 

Имеются данные о валовом сборе и урожайности зерновых культур по трем колхозам:

 

Колхозы Валовый сбор Урожайность
 

 

Определить среднюю урожайность.

 

Валовый сбор = урожайность площадь.

Частота – площадь посевов

 

 

 

3. Средняя хронологическая величина.

 

Применяется для определения среднего уровня в моментных рядах динамики. Существует два вида рядов динамики:

 

1. моментные;

2. интервальные.

Интервальные – это такие ряды в которых данные приводятся за определенный период времени (месяц, год). Средний уровень ряда в интервальном ряду определяется по средней арифметической простой.

 

 

Моментные –это такие ряды, где данные представлены на определенный момент времени (на определенную дату). Если интервалы времени между датами равны, то расчет средней ведут по формуле средней хронологической простой.

 

 

Пример.

 

Моментный ряд:

 

  1.01 1.02 1.03 1.04
Численность рабочих

 

чел.

 

Если интервалы между датами в моментных рядах не одинаковые, то расчет ведется в два этапа: по средней хронологической взвешенной

 

1. определяется средняя внутри каждого интервала времени по среднеарифметической простой;

 

2. определяется общая средняя по среднеарифметической взвешенной, где частотами являются интервалы между датами.

 

 


Пример.

 

Имеются данные о численности населения города на:

 

1.01.93 – 632 тыс. чел.,

1 год

1.01.94 – 645 тыс. чел.,

4 .5 года

1.07.98 – 649 тыс. чел.,

0.5 года

1.01.99 – 657 тыс. чел.

 

 

Определить среднюю численность:

 

1.

 

2. ,

где 2 – это два полугодия;

1 – это одно.

 

4. Средняя квадратическая величина.

 

Применяется при определении показателей вариации и рассчитывается как корень квадратный из средней арифметической.

 

Средняя квадратическая простая:

Взвешенные:

 

5. Средние структурные величины.

 

При определении среднеструктурных величин определяются мода и медиана.

Медиана – вариант, расположенный в центре ранжированного ряда, медиана делит ряд на две одинаковые части, таким образом, чтобы по обе ее стороны находилось одинаковое число единиц совокупности. Если всем единицам ряда придать порядковые номера, то порядковый номер медианы будет определяться по формуле для рядов, где - нечетное, если же ряд с четным числом единиц, то медианой будет являться среднее значение между двумя вариантами, определенными по формуле: .

Нахождение медианы в интервальных вариационных рядах требует предварительного определения интервала в котором находится медиана, т.е. медианного интервала – этот интервал характеризуется тем, что его коммулятивная частота равна полусумме или превышает полусумму всех частот ряда.

 

В зависимости от этого медиану определяют по формуле:

 

где - нижняя граница медианного интервала;

- ширина медианного интервала;

- сумма накопленных частот до частоты медианного интервала;

- частота медианного интервала.

 

Пример.

 

Определить медиану, если:

 

Стаж рабочих .лет Численность раб. Коммулята
0-5
5-10
10-15
15-20
20 и более
Всего:  

 

 

 

Вывод: из 1000 рабочих 500 чел. имеет стаж работы меньше 8,57.лет.

 

Квартиль –это четвертая часть совокупности, определяется как и медиана, только сумму частот необходимо разделить на 4, а при определении квартильного интервала коммулятивная частота должна быть больше или равна четверти суммы частот совокупности.

Мода – вариант наиболее часто встречающийся в совокупности. В дискретном ряду мода – это вариант с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант модального интервала. В пределах интервала надо определить то значение признака, который обладает наибольшей частотой. Определяем по формуле:

 

где - нижний уровень модального интервала;

- ширина интервала;

- частота интервала;

- частота предыдущего и последующего интервала.

 

 

Дециль – делит совокупность на десять равных частей. Определяется аналогично как и квартиль только сумму частот необходимо разделить на 10.

 

5. Средняя геометрическая.

Применяетсядля характеристики рядов динамики при определении средних темпов роста.

 

, если , тогда:

;

 

, т.е. число уровней ряда без одного или число темпов роста.,

- начальный уровень ряда;

- конечный уровень ряда.

 

Пример.

 

Определить цепные темпы роста и средний темп роста товарной продукции, если:

 

 
Товарная Продукция млн. руб.

 

; ; ;

 

 

средний темп роста = = 1,0153

 

 


Понятие вариации.

Различия индивидуальных значений признака внутри изучаемой совокупности называется вариацией признака.

Это изменение возникает в результате того, что индивидуальные значения складываются по совокупным факторам, которые по-разному действуют на совокупность целого.

Средняя величина – это абстрактная обобщающая характеристика признака изучаемой совокупности.

Она не дает данные о том, как отдельные значения изучаемой совокупности группируются вокруг средней.

Колеблимость отдельных значений характеризуют показатели вариации. Термин «вариация» происходит от латинского и обозначает – изменения, колеблимость.

Под вариацией в статистике понимают такие количественные изменения в пределах одного признака в однородной совокупности, которые обусловлены и зависят от влияния различных факторов.

Анализ статистической совокупности позволяет оценить степень зависимости изучаемой совокупности и ее признаков от ее факторов.

 

Пример.

 

Изучая вариацию можно определить однородность совокупности. Степень близости данных отдельных единиц x к средней измеряются рядом абсолютных, относительных и средних показателей вариации.

 

Показатели вариации.




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.