Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Основные концепции анализа и проектирования систем «человек-машина»



 

В настоящее время в инженерной психологии, а также в смежных с нею научных дисциплинах и на­правлениях (эргономика, психология труда и управле­ния, теория эргатических систем, теория надежности и эффективности СЧМ и др.) разработан целый ряд концепций анализа, описания и проектирования сис­тем «человек—машина». Эти концепции различаются используемым математическим аппаратом, составом необходимых исходных данных, различными взгляда­ми на роль и место человека в СЧМ. Такое положение является достаточно точным отражением современно­го уровня развития инженерной психологии, посколь­ку в зависимости от конкретных условий специалист по инженерной психологии (конструктор, организатор производства, специалист по эксплуатации) может выбрать и использовать ту или иную из существую­щих концепций. Поэтому представляется целесообраз­ным рассмотреть наиболее конструктивные из возмож­ных концепций (теорий, подходов). Все они условно делятся на две большие группы: психологические и кибернетические (рис. 3.3).

Наиболее общей из них является концепция, осно­ванная на использовании деятельностного подхода [55, 56]. С ее позиций категория деятельности выступает как начало, содержание и завершение процессов ана­лиза, организации, проектирования и оценки СЧМ. При этом категория деятельности выступает в качестве предмета:

■ объективного научного изучения;

■ управления, т. е. того, что подлежит организации в слож­ную систему функционирования и оценки;

■ проектирования, основной задачей которого является вы­явление способов и условий оптимальной реализации оп­ределенных видов деятельности;

■ многоплановой оценки, осуществляемой в соответ­ствии с различными критериями (надежность, быстро­действие, удовлетворенность трудом, комфортность и т. п.).

 

Рис. 3.3. Основные концепции анализа и проектирования СЧМ.

 

В рамках этой концепции разработан микрострук­турный подход (от греч. mikros — малый и лат. stru­cture — строение) к анализу деятельности. Сущность микроструктурного подхода состоит в выделении ком­понентов (единиц анализа), сохраняющих свойства це­лого, и установлении между ними типов взаимоотно­шения или координации. Набор (алфавит) компонентов должен быть достаточно широк для того, чтобы охва­тить процесс в целом; каждый из компонентов должен обладать не только качественной, но и количественной определенностью.

Микроструктурный подход оперирует понятиями операции, функционального блока, фазы процесса, кванта восприятия или действия. Каждый из компонен­тов отличается по ряду параметров: место в структуре деятельности, информационная емкость, время выпол­нения, тип преобразования информации, возможные связи с другими компонентами и средой.

Наиболее распространенный прием микрострук­турного подхода состоит в том, что время выполнения работы делится на ряд интервалов и предполагается, что в каждом из них выполняются те или иные пре­образования входной информации, осуществляемые определенными функциональными блоками. Микро­структурный подход является возможным прототипом проектирования отдельных функций операторской деятельности [55, 215].

Одной из первых психологических концепций была предложенная в 1967 году Б.Ф. Ломовым кон­цепция проектирования деятельности [цит. по 92]. Суть ее состоит в том, что проект деятельности опе­ратора (и вообще любого работника) должен высту­пать как основа решения всех остальных задач про­ектирования СЧМ. Эта концепция базируется на рассмотренных в первой главе методологических принципах (гуманизации труда, активного оператора, комплексности и др.).

Целый ряд задач анализа, описания и проектиро­вания СЧМ может быть решен на основе использования структурно-психологической концепции [17, 143]. Основной смысл ее состоит в соотнесении структуры технических средств деятельности оператора и психо­логических факторов сложности (ПФС) выполнения им своих функций, в частности сложности решения опе­ративных задач. С позиций данной концепции проек­тирование технических средств рассматривается как процесс анализа и материализации априорных стра­тегий решения задач с целью оптимизации ПФС. Их оптимальный уровень достигается путем многоуровне­вой взаимной адаптации людей и технических средств. Оптимальными значениями ПФС считаются те, кото­рые обеспечивают достижение цели (решение задачи) при минимальном значении внешнего критерия слож­ности (времени решения задачи, числа ошибок, пока­зателей психофизической напряженности и др.).

Оптимизация ПФС достигается путем создания системы адаптивного информационного взаимодей­ствия между оператором и ЭВМ, работающей по прин­ципу гибридного интеллекта. Он достигается путем разумного сочетания естественного интеллекта чело­века и возможностей современных ЭВМ. При этом человек и ЭВМ рассматриваются как равноправные партнеры по информационному взаимодействию. Оп­тимизации ПФС способствует также применение трансформационной теории обучения. Согласно ей процесс обучения не носит традиционно используемый характер; на кривой обучения имеются плато (пологие участки), соответствующие переходуна новый, более высокий уровень овладения деятельности. Последнее одновременно способствует и достижению более оп­тимальных значений ПФС.

Анализ взаимодействия априорных и реальных стратегий поведения оператора и соответствующих им уровней ПФС позволяет расширить рамки инженер­но-психологического проектирования — не только рас­пространить его на предварительный выбор характе­ристик системы, но и сделать проектирование непрерывным, последовательно решающим задачу оп­тимизации СЧМ и после реализации предварительно­го проекта, т. е. в ходе эксплуатации системы [17].

При разработке автоматизированных систем орга­низационного типа (АСУП, ОАСУ и т. п.) весьма плодотворным оказывается использование концепции психо­логического обеспечения (ПО) АСУ [141]. Под ним по­нимается планирование, разработка, организация и реализация комплекса мероприятий по учету психоло­гических факторов на всех этапах создания, внедрения и эксплуатации АСУ. Согласно этой концепции, любая АСУ рассматривается как сложная социотехническая система, которая не может эффективно функциониро­вать, если она создается и эксплуатируется без учета психологического фактора. Его учет должен осуществ­ляться на всех этапах проектирования, внедрения и эксплуатации АСУ. Создание АСУ должно начинаться с проектирования оптимальной (рациональной) челове­ческой деятельности. Важнейшим фактором, обеспечи­вающим эффективность функционирования разрабаты­ваемой системы, является подготовка персонала АСУ. Она базируется на анализе, проектировании и синтезе (формировании) деятельности. Анализ деятельности осуществляется на этапе предпроектного обследования, а его результатом являются рекомендации на проекти­рование или совершенствование деятельности персо­нала АСУ. Проектирование деятельности осуществля­ется на этапах технического и рабочего проектирования, а его результатом являются должностные инструкции. Они должны разрабатываться с учетом обеспечения быстрейшей адаптации работника к эффективной дея­тельности в условиях АСУ. Синтез деятельности вклю­чает в себя профессиональный отбор, обучение, вы­работку индивидуальных и коллективных умений и навыков, а также обеспечение психологической совме­стимости всего персонала АСУ. Синтез деятельности должен начинаться на этапе технического проектиро­вания и завершаться на этапе внедрения во взаимодей­ствии с проектированием технической части АСУ. Его конечной целью является обеспечение фактической эф­фективной деятельности всего персонала АСУ.

При создании автоматизированных систем управ­ления технологическими процессами (АСУТП), дея­тельность оператора в которых носит сложный мыслительный характер, может быть использована концепция идеализированных структур деятельности [26]. Эта концепция базируется на данных о формали­зуемых человеком способах организации процесса контроля и управления объектом на разных уровнях обучения и в разных конкретных условиях. На основе концепции разработаны методы инженерно-психологического анализа и проектирования деятельности оператора АСУТП, базирующиеся на исходных данных о психологической структуре деятельности оператора (включающей сложные виды мыслительных задач), по­зволяющие свести к минимуму число операций (ша­гов) решения задач проектирования, ложность исход­ных данных на разных стадиях создания СЧМ.

Для анализа, описания и проектирования следящих систем может быть использована концепция инженер­но-психологического проектирования полуавтомати­ческих систем управления, использующих принцип слежения [173, 201]. Практическая реализация концеп­ции связана с решением ряда проблем:

■ создание единого подхода к описанию функционирования технической части системы и деятельности оператора;

■ учет индивидуальных психофизиологических характери­стик деятельности, различия между которыми носят, как правило, случайный характер;

■ учет динамики характеристик деятельности в процессе обучения;

■ отбор операторов, обладающих качествами, необходи­мыми для работы на конкретном объекте управления; из этого следует, что вопросы обучения и профессионально­го отбора выступают как этапы системного подхода к проектированию деятельности.

Реализация концепции потребовала уточнения понятия «передаточная функция оператора». Оказа­лось, что спектр ответных действий оператора содер­жит кроме требуемого сигнала и спектр дополнитель­ных (малых) движений, необходимых оператору для познания и контроля процесса управления и назван­ных дельтаремнантой. Малые движения являются одним из показателей психологических особенностей работы оператора в режиме слежения. Отсутствие формализованного описания свойств этих движений в большинстве математических моделей деятельности и обуславливает их неадекватность. Включение же их в математические модели позволяет учитывать психоло­гические особенности деятельности человека в следя­щих системах.

В результате учета малых движений стало возмож­ным аналитически оценивать долю погрешности, вно­симую в ошибку выходного сигнала системы, как от функционирования человека-оператора, так и от раз­броса параметров любого из элементов технической части системы. Это дает возможность производить синтез системы по заданным требованиям. При этом учитываются и экономические показатели, что позво­ляет создавать наиболее экономичные системы «чело­век—машина».

Рассмотренные концепции отличает ярко выра­женный их, если так можно выразиться, психологичес­кий характер. Они базируются на знании и учете пси­хологических характеристик и свойств человека, а основу этих концепций составляет прежде всего про­ектирование деятельности оператора в системе «чело­век—машина». Помимо них существует еще ряд кон­цепций, в основе которых лежит кибернетический подход к анализу и проектированию СЧМ.

Одна из таких концепций носит название организмической. Она разработана в рамках теории эргатических систем [53, 131]. В соответствии с организмической кон­цепцией основой оптимальной кооперации человека и машины должны служить принципы организации живого, т. е. организма как феномена целесообразного живого в природе. Концепция основывается на двух основных по­ложениях: 1) организм представляет собой соответствую­щим образом организованную совокупность функциональ­ных систем (понятие о них дается в главе IV); 2) основные закономерности организации и функционирования каж­дой системы и всего организма и СЧМ в целом — одни и те же. Основное смысловое содержание организмического постулата формулируется следующим образом: созда­ние оптимальных СЧМ в функциональном смысле экви­валентно оптимальной «достройке» организма оператора машинами как орудиями труда.

В рамках концепции предлагается определенная система принципов поведения биосистем. К их числу относятся принципы: активности, гомеостаза, автоном­ности, иерархичности, доминанты, целостности, эволю­ции. Подробно они описаны в [53].

Сущность организмической концепции сводится к синтезу эргамата — системы, состоящей из человека и машины и выполняющей определенную работу действи­ями человека внутри системы. Поведение эргамата описывается системой дифференциальных уравнений. Задача синтеза эргамата заключается в определении числа и состава входящих в систему элементов (вклю­чая и человека) и их функциональных обязанностей.

Для решения задачи определяются обобщенные рабочие характеристики (ОРХ) оператора. Окончатель­ный вариант структуры эргамата выбирают оптимиза­цией общецелевой системной функции при выполне­нии ограничений, накладываемых на соответствующие временные, точностные и надежностные ОРХ. Концеп­ция нашла применение для расчета и оптимизации непрерывных систем ручного управления, в частности транспортных систем.

К кибернетическому направлению можно отнести и концепцию обеспечения качества функционирования (ОКФ) эргатических систем [102, 214]. Задача обеспе­чения требуемого уровня качества заключается в оцен­ке (с помощью процедуры контроля) и устранении (путем проведения профилактического обслуживания) причин и условий, которые его снижают (не обеспечи­вают). При этом возникает задача по определению, когда и какие мероприятия следует проводить, чтобы получать максимально возможный эффект от приме­нения СЧМ по своему назначению в течение заданно­го времени ее функционирования.

Последовательность мероприятий по ОКФ эрга­тических систем следующая. В начальный момент ка­чество функционирования системы соответствует тре­буемому уровню, т. е. технические звенья и операторы находятся в работоспособном состоянии и готовы к выполнению задания. Через некоторое время необхо­димо провести контроль параметров функционирова­ния системы (как техники, так и операторов). Если к этому времени система функционирует безотказно, то следует проводить плановый контроль. Если же возникли отказы, то следует осуществлять профилак­тические воздействия, которые должны полностью восстановить требуемый уровень качества. К таким воздействиям относятся: ремонт или замена отказав­ших технических звеньев, восстановление работоспо­собности операторов, исправление ошибок их деятельности, профессиональный отбор и обучение персона­ла и т. п.

Рассмотренный цикл повторяется заново до тех пор, пока время функционирования системы не достигнет заданного значения.

К этому же направлению относится и функцио­нально-структурная теория эргатических систем. Ос­нову ее составляет обобщенный структурный метод (ОСМ) оценки эффективности, качества и надежнос­ти СЧМ [35, 137]. Сущность метода заключается в том, что любую деятельность можно расчленить на мель­чайшие элементы — типовые функциональные едини­цы (ТФЕ). На основании ТФЕ разработаны типовые функциональные структуры (ТФС), которые служат уже не для описания отдельных действий, а для опи­сания фрагментов деятельности, присущих самым раз­нообразным системам. С помощью ТФС может быть описана деятельность в целом. В рамках метода полу­чены математические модели, позволяющие оценить показатели качества функционирования эргатической системы и определить ту ее структуру, для которой эти показатели будут наилучшими. Дальнейшее развитие метода состоит в том, что элементы планирования и принятия решений моделируются с помощью метода ситуационного управления, а исполнение — с помо­щью ОСМ.

Такой подход носит название комплексного обоб­щенного структурного метода (КОСМ), обеспечива­ющего представление функционирования эргатичес­ких систем в виде функционально-семантических сетей. Однако этот подход находится еще в стадии разработки.

Одной из наиболее работоспособных является си­стемная концепция анализа и оценки надежности СЧМ [185, 186]. Она базируется на восьми частных концепциях: аппаратурной безотказности применяе­мых технических средств, полной аппаратурной бе­зотказности, восстанавливающего оператора, подго­тавливающего оператора, управляющего оператора, дежурного оператора, биологически надежного опе­ратора. Целесообразность использования конкретной концепции определяется видом решаемой задачи и не­обходимостью учета тех или иных свойств оператора и техники и режимов работы СЧМ. При этом каждая последующая концепция учитывает более полный набор свойств и дает более полные оценки надежно­сти СЧМ. Так, при оценке только аппаратурной бе­зотказности достаточно использовать первые две кон­цепции (влияние оператора на надежность СЧМ при этом не учитывается); для обеспечения ремонтопри­годности оборудования необходимо использовать уже третью концепцию и т. д. Более высокие концепции обеспечивают расчет надежности СЧМ в целом, учи­тывая и готовность операторов, и подверженность их ошибкам и биологическим отказам организма. Для каждой концепции разработаны формулы для опре­деления надежности СЧМ. Сложность деятельности (учет различных факторов) учитывается с помощью поправочных коэффициентов, степень детализации которых зависит от вида учитываемых факторов слож­ности.

Совместно с разработанной программой обеспе­чения эргономического качества СЧМ и методикой расчета времени и вероятности безошибочного выпол­нения алгоритма оператором (способ статистического эталона) данный подход может быть применен для анализа, описания и проектирования довольно широ­кого круга систем «человек—машина».

В рамках кибернетического направления разра­ботана и успешно применяется на практике и сис­темно-лингвистическая концепция [196]. Сущность концепции состоит в том, что на ранних этапах про­ектирования используется классификация систем ото­бражения информации по внешним характеристикам, языкам обмена и методам технической реализации. На последующих этапах применяются специальные ме­тоды и языки описания действий человека. Далее про­водятся психологические эксперименты, в которых выявляются ход и особенности решения человеком критических задач и наконец строится трансформа­ционная модель принятия решений, в составе которой используются формализмы лингвистической семанти­ки. Посредством модели сравниваются различные ва­рианты построения систем отображения информации, а также конструкции языков обмена и процедуры ди­алога «человек—ЭВМ».

Концепция нашла применение в трех основных областях: для построения щитов управления сложны­ми автоматизированными технологическими процесса­ми; для создания учебно-тренировочных центров и для проектирования диалога «человек—ЭВМ». На ее осно­ве возник алгоритмический подход в подготовке опе­раторов: основным стержнем подготовки является ов­ладение оператором приемами и навыками принятия оперативных решений. При этом знания должны спо­собствовать решениям, носить направленно оператив­ный характер, навыки взаимодействия с приборами и органами управления — дополнять, а не затемнять содержание оперативных решений. Разработан ряд форм подготовки операторов, в частности, карты на­блюдений, деревья оценки ситуаций, планы дей­ствий, игровые сценарии тренировок [197].

На основе концепции проведено инженерно-пси­хологическое проектирование щитов управления для ряда тепловых и атомных энергоблоков, учебно-трени­ровочных центров, различного рода диалоговых сис­тем — для научных экспериментов, автоматизации проектирования и обучения.

Определенный интерес представляет также раз­работанная Г.В. Дружининым статистическая теория процессов выполнения работы [42]. Она используется для априорной оценки времени выполнения работы в условиях действия на работников различного рода случайных факторов. В инженерной психологии дан­ная теория применяется для описания процессов пе­реработки информации оператором и определения времени τоп решения им той или иной задачи управле­ния при следующих предположениях:

■ средняя скорость переработки информации V в пределах одной задачи постоянна, но в силу случайных факторов может меняться от задачи к задаче;

■ объем информации, перерабатываемой при решении каждой задачи постоянен и равен h;

■ величина V распределена по нормальному закону с па­раметрами mv и σv.

Зависимость количества перерабатываемой инфор­мации от времени выражается формулой H(t)=Vt. Эта зависимость является веерной случайной функции, ее графическое изображение приведено на рис. 3.4. Для таких функций закон распределения времени топ, необ­ходимого для достижения величиной H(t) заданного значения h представляет собой альфа-распределение. Оно характеризуется двумя параметрами: а и р. Пер­вый из них является безразмерной величиной и пред­ставляет собой среднюю относительную скорость пе­реработки информации, параметр Р имеет размерность времени и называется относительным объемом работы. При а>3 что характерно для большинства видов операторской деятельности, параметры альфа-распределения можно оценить по формулам

где τоп στ, — соответственно среднее значение и среднеквадратическое отклонение времени решения зада­чи оператором.

Использование этих соотношений позволяет полу­чить функцию плотности распределения времени хоп. В инженерной психологии статистическая теория вы­полнения работы используется для описания процес­сов переработки информации при сделанных выше допущениях в условиях действия ряда случайных фак­торов. Наибольшее применение эта теория получила для определения времени топ, а также определения надежности оператора, работающего в условиях вре­менных ограничений.

Рис. 3.4. Веерная случайная функция времени.

 

В рамках кибернетического направления В.Г. Де­нисовым разработана концепция совместимости опе­ратора, машин и среды в рамках единой системы «че­ловек—машина» [38]. Согласно концепции основным системообразующим фактором в СЧМ является совме­стимость составляющих систему компонентов. Рас­сматриваются следующие виды совместимости:

■ информационная, предполагающая соответствие цирку­лирующих в системе информационных потоков возмож­ностям отдельных ее компонентов по приему и перера­ботке этих потоков;

■ энергетическая, предусматривающая совместимость от­дельных компонентов СЧМ с точки зрения производи­мых усилий;

■ пространственно-антропометрическая, определяемая со­ответствием компонентов системы пространственным характеристикам (размеры, расположение в простран­стве, досягаемость и т. п.);

■ технико-эстетическая, заключающаяся в соответствии внешнего вида и удобства работы с изделием эстетичес­ким вкусам человека;

■ биофизическая, предусматривающая совместимость компонентов системы с точки зрения осуществления уп­равляющих движений.

В дальнейшем на основе этой концепции Е.М. Хохловым была выдвинута в качестве центральной пробле­мы категория «взаимодействие»; с помощью которой решалась задача учета большого количества факторов, влияющих на деятельность оператора [189]. При этом автор отрицательно относится к идее выделения пси­хологических факторов сложности [17], считая ее неплодотворной. На основе проблемы взаимодействия разработан комплексный операционный анализ эксп­луатационных процессов, основу которого составляет кольцевой (спиральный) анализ отрицательных про­цессов в СЧМ. К отрицательным процессам относятся потоки отказов и дефектов техники, поток ошибок опе­раторов, поток эксплуатационных замечаний. Выявлен­ные такие потоки в ряде СЧМ (на воздушном транс­порте, в прессово-кузнечном оборудовании и др.) были обработаны методом логического центрирования, на основании чего построены статистические ряды дина­мики, столбиковые диаграммы, определены основные статистические индексы [63]. Полученные данные используются при модернизации существующих и проектировании вновь создаваемых СЧМ аналогично­го назначения.

Рассмотренные концепции, несмотря на их разли­чия между собой, нашли в той или иной степени приме­нение при решении ряда практических задач. Их при­менение дало и существенный экономический эффект [18, 35, 42, 53, 102, 137, 169, 189, 197]. Однако в них вне поля зрения остались особенности функционирования систем «человек—машина», деятельность оператора в которых протекает по схеме массового обслуживания. Этот класс СЧМ условно называется автоматизирован­ными системами массового обслуживания (АСМО). Их особенности рассматриваются в специальной концеп­ции анализа и проектирования АСМО [45, 167].

Эта концепция, не отвергая и не противореча рас­смотренным выше концепциям, дополняет их учетом особенностей деятельности оператора в условиях по­тока сигналов, что является отличительной чертой си­стем массового обслуживания. В основе концепции лежит положение, выдвинутое Ю.М. Забродиным о том, что основная проблема в проектировании деятельности оператора состоит в оценке возможностей ее вы­полнения [142]. Тем самым подчеркивается, что основ­ные проектные решения принимаются в результате инженерно-психологической оценки. Учитывая специ­фику деятельности оператора в АСМО (работа в усло­виях потока сигналов) основное внимание в концепции уделяется динамической оценке показателей деятельности и состояния оператора.

С учетом сказанного структурная схема проекти­рования деятельности оператора имеет вид, показан­ный на рис. 3.5. Основу проекта составляет анализ деятельности в условиях потока сигналов (особеннос­ти такой деятельности рассмотрены в следующей гла­ве). На основании анализа проводится инженерно-психологическая оценка деятельности, по результатам которой и принимаются основные проектные решения. Оценка является важнейшим и завершающим этапом каждой из стадий проектирования системы.

Инженерно-психологическая оценка проводится по четырем основным направлениям (рис. 3.5). Она включает в себя как оценку достигнутых результатов, так и оценку тех затрат, которыми эти результаты до­стигаются.

Рис. 3.5. Структурная схема анализа и проектирования АСМО.

 

Оценка результатов состоит в определении соответствия техники возможностям человека по об­работке потока сигналов и определении основных по­казателей качества деятельности (надежность, быст­родействие) с последующей оценкой их влияния на соответствующие показатели всей системы.

Помимо оценки достигнутых результатов необ­ходимо провести и оценку произведенных при этом затрат. Они включают в себя прежде всего экономи­ческие затраты, это направление носит название эко­номической оценки СЧМ. Однако для СЧМ понятие затрат имеет еще один смысл. В данном случае речь идет о затратах человеческого организма, об опреде­лении психофизиологической «цены» деятельности. Эта задача решается путем контроля и диагностики функционального состояния оператора. Наибольшее значение при этом имеет применение бесконтактных методов.

Основным методом проведения оценки является математическое моделирование деятельности операто­ра. Разрабатываемые для этой цели модели относятся к классу моделей обслуживания.

Рассмотренные концепции носят довольно общий, системный характер и применяются для решения за­дач анализа и проектирования деятельности операто­ра в целом. Помимо них разработан и ряд частных концепций, применяемых для решения конкретных, отдельных задач. К ним относятся: концепция включе­ния [81], концепция информационного поиска [57], алгоритмического описания деятельности оператора [52], саморегуляции [77] и самоконтроля деятельности [121, 145], психологической защиты [34, 145] и целый ряд других. Более подробно эти концепции рассмотре­ны при изучении соответствующих вопросов книги.

 

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.