Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Дифракция света. Принцип Гюйгенса и Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.



Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Если на пути параллельного светового пучка расположено круглое препятствие, то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос. Дифракционные явления были хорошо известны еще во времена Ньютона, но объяснить их на основе корпускулярной теории света оказалось невозможным.

Если свет от источника через сферическое отверстие на­править на экран (рис.1 а), то, согласно закону прямолиней­ного распространения света, на экране должно наблюдаться светлое пятно АВ - изображение отверстия. При уменьшении отвер­стия его изображение также должно уменьшаться. Однако опыт привел к неожиданному результату: начиная с определенного размера отверстия его дальнейшее уменьшение, сопровождается увеличением пятна (А’B’), которое становится расплывчатым, нерав­номерно освещенным и на нем появляется ряд колец (рис.1 б). Данное явление проникновения световых волн в область гео­метрической тени, огибания ими препятствий и вообще откло­нение их от прямолинейного распростра­нения было названо ди

S0
*
Э
A
B
a)
б)
Рис. 1
фракцией света. Дифракция явилась еще од­ним подтверждением справедливо­сти волновой теории света.

Изложенный в разделе 2. 1. принцип Гюйгенса помог объяснить дифракцию качественно. Поскольку вторичные источники излучают сферические волны, световое воз­мущение будет распространяться по всем направлениям со скоростью, свойственной среде. Значит, каждая точка отверстия (рис.1 a) будет источником сферической волны и свет за отверстием мо­жет идти по всем направлениям, т.е. отклоняться от прямоли­нейности. Огибающая поверхность, т. е. поверхность, касающаяся всех сферических вторичных волн в том положении, которого они, достигнут к моменту времени t, и представляет собой волновой фронт в этот момент.

Французский физик О. Френель, развивая идеи Гюй­генса, дал метод количественного расчета дифракции, назван­ный принципом Гюйгенса-Френеля. Рассмотрим основные поло­жения данного принципа:

a
∆S
В
S
Рис.2.
1. Любой источник света S0 можно заменить эквивалент­ной системой фиктивных (вторичных) источников, находящихся на какой-либо его волновой поверхности S.

2. Все вторичные ис­точники вол­новой поверхности S излучают коге­рентные волны, которые накладываются во всех точках пространства и интерферируют между собой.

3. Каждый вторичный источник излучает преимущественно в направлении внешней нормали n к dS. Амплитуда вторичной волны в на­правлении r (где r – расстояние от dS до точки наблюдения В) уменьшается с увеличением угла α между rи нормалью n к dS (рис.2). Она становится равной нулю при α ≥ π/2, т.е. излучение внутрь поверхности не распространяется. От каждого участка dS в точку В приходит световое колебание

.

Здесь Е0 – амплитудное значение светового вектора, С(α)- коэффициент, зависящий от угла α (С(0) = 1, С(π/2)= 0). Тогда результирующий световой вектор от всей волновой поверхности S в точке В равен

.

Данный интеграл по поверхности называют интегралом Френеля. Современная теория Максвелла электромагнитных волн для точного решения задачи о распространении световых волн при наличии препятствий приводит к выражению аналогичному интегралу Френеля. Это математическое выражение позволяет вычислять световое возмущение в любой точке наблюдения. Недостатком данного принципа явля­ется сложность его практического применения.

Рис.3 Иллюстрация к методу зон Френеля
S’
4. Если часть волновой поверхности закрыть непрозрач­ным экраном, то вторичные волны излучаются только откры­тыми участками поверхности.

Метод зон Френеля

 

Для упрощения расчета результирующей амплитуды све­тового колебания в точке наблюдения Френель предложил ме­тод деления фронта волны на зоны. Пусть S– точечный источ­ник света, P – произвольная точка наблюдения, в которой необ­ходимо определить амплитуду Е световых колебаний. Фронт волны в опре­деленный мо­мент времени есть сфера S’ (рис.3). Зоны Френеля стро­ятся таким обра­зом, что рас­стояния от краев двух соседних зон до точки на­блюдения отли­чаются на половину длины световой волны λ/2. Обозначим расстояние от точки P до волнового фронта OP = L, тогда границей централь­ной или первой зоны будут точки поверхности S’, находящиеся на расстоянии L+λ/2 от точки P. Эти точки расположены на по­верхности по окружности. Точки сферы S’, находящиеся на рас­стоянии L+2λ/2 от P, образуют границу второй кольцевой зоны, на расстоянии L+3λ/2 – гра­ницу третьей и т.д. Кольцеобразные участки поверхности волны, «вырезаемые» из неё этими сферами, и называется зонами Френеля.

Обозначим Е1 амплитуду волны, пришедшей в точку P от первой зоны, Е2 – от второй и т.д. Колебания, приходящие в точку В от двух соседних зон, противоположны по фазе, так как их разность хода равна λ/2, они будут ослаблять друг друга. При прохождении волной пути в половину длины волны ее фаза меняется на противоположную. Поэтому при суммировании амплитуды нечетных зон будем брать со знаком «+», а четных – со знаком «-». В итоге результирующая ампли­туда, т.е. амплитуда колебаний от всех зон в точке P будет равна

Е = Е1Е2 + Е3Е4 +…+ Еn.

С увеличением номера зоны амплитуда колебаний моно­тонно убывает, так как увеличивается расстояние от зоны до точки P и угол α между нормалью к поверхности зоны и на­прав­лением на точку наблюдения, поэтому по абсолютной вели­чине Е1 > Е2 > Е3 > Е4 >…> Еn.

Из-за того, что число зон n очень велико (например, для λ= 500 нм и L = 10 см n = 80000), амплитуды двух соседних зон мало отличаются друг от друга по величине и с большой степе­нью точности можно предположить, что

. Если представить амплитуду любой не­четной зоны, например Е1 как , то выражение для результирующей амплитуды запишется в виде

Согласно вышеприведенным рассуждениям все выраже­ния в скобках обращаются в нуль и ЕЕ1/2. Результирующая амплитуда светового колебания от всей волновой поверхности в точке наблюдения равна половине амплитуды, приходящей от одной центральной зоны. Если на пути волны поставить непро­зрачный экран, оставляющий открытой только центральную зону Френеля, то амплитуда светового колебания в точке P бу­дет равняться Е1, т.е. возрастет в два раза. Если экран открывает две зоны, их амплитуды будут «гасить» друг друга и в точке P будет наблюдаться минимум интенсивности. Если открыты три зоны, третья зона останется не скомпенсированной и в точке P будет наблюдаться максимум, и т.д. Таким образом, если на волновой поверхности открыто нечетное число зон Френеля, в точке наблюдения будет светло, если четное – темно. Если ме­жду волновой поверхностью и точкой P поставить специальную пластинку, которая закрывала бы все четные (или нечетные) зоны, то интенсивность в точке P резко возрастает. Такая пла­стинка называется зонной и действует подобно собирающей линзе.

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком. Также закон прямолинейного распространения света позволяет объяснить, как возникают солнечные и лунные затмения.

8). Дифракция Френеля на круглом отверстии:

Пусть на пути сферической световой волны, испускаемой источником S, расположен непрозрачный экран с круглым отверстием радиуса r0. Если отверстие открывает четное число зон Френеля, то в точке P будет наблюдаться минимум, так как все открытые зоны можно объединить в соседние пары, колебания которых в точке P приблизительно гасят друг друга.

При нечетном числе зон в точке P будет максимум, так как колебания одной зоны останутся не погашенными.

Можно показать, что радиус зоны Френеля с номером m при не очень больших m:

.

Расстояние "a" примерно равно расстоянию от источника до преграды, расстояние "b" - от преграды до точки наблюдения P.

Если отверстие оставляет открытым целое число зон Френеля, то, приравняв r0 и rm, получим формулу для подсчета числа открытых зон Френеля:

.

При m четном в точке P будет минимум интенсивности, при нечетном - максимум.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.