Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Способы наблюдения интерференции света. Метод Юнга, зеркала и бипризма Френеля.



Для осуществления интерференции света необходимо получить когерентные световые пучки, для чего применяются различные приемы. До появления лазеров (см. § 233) во всех приборах для наблюдения интерференции света когерентные пучки получали разделением и последующим сведением световых лучей, исходящих из одного и того же источника. Практически это можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов.

1. Метод Юнга. Источником света служит ярко освещенная щель S(рис. 245), от которой световая волна падает на две узкие равноудаленные щели S1 и S2,параллельные щели S. Таким образом, щели S1 и S2играют роль когерентных источников.

Интерференционная картина (область ВС) наблюдается на экране (Э), расположенном на некотором расстоянии параллельно S1 и S2. Как уже указывалось (см. § 171), Т. Юнгу принадлежит первое наблюдение явления интерференции.

2. Зеркала Френеля.Свет от источника S (рис.246) падает расходящимся пучком на два плоских зеркала А1О и А2О,расположенных относительно друг друга под углом, лишь немного отличающимся от 180° (угол jмал). Используя правила построения изображения в плоских зеркалах, можно показать, что и источник, и его изображения S1 и S2(угловое расстояние между которыми равно 2j)лежат на одной и той же окружности радиуса r с центром в О(точка соприкосновения зеркал).

Световые пучки, отразившиеся от обоих зеркал, можно считать выходящими из мнимых источников S1 и S2,являющихся мнимыми изображениями S в зеркалах.Мнимые источники S1 и S2 взаимно когерентны, и исходящие из них световые пучки, встречаясь друг с другом, интерферируют в области взаимного перекрывания (на рис. 246 она заштрихована). Можно показать, что максимальный угол расхождения перекрывающихся пучков не может быть больше 2j. Интерференционная картина наблюдается на экране (Э), защищенном от прямого попадания света заслонкой (3).

3. Бипризма Френеля.Она состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами. Свет от источника S(рис. 247) преломляется в обеих призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых источников S1 и S2,являющихся когерентными. Таким образом, на поверхности экрана (в заштрихованной области) происходит наложение когерентных пучков и наблюдается интерференция.

 

 

 

4). Интерференция света в тонких пленках. Полосы равного наклона и равной толщины.В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникающее в результате интерференции света, отраженного двумя поверхностями пленки.

Пусть на плоскопараллельную прозрачную пленку с показателем преломления n и толщиной dпод углом i (рис. 249) падает плоская монохроматическая волна (для простоты рассмотрим один луч). На поверхности пленки в точке Олуч разделится на два: частично отразится от верхней поверхности пленки, а частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0 = 1), а частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их пути поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы. В результате возникает интерференционная картина, которая определяется оптической разностью хода между интерферирующими лучами.

Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ,

где показатель преломления окружающей пленку среды принят равным 1, а член ±l0/2 обусловлен потерей полуволны при отражении света от границы раздела. Если n > n0, то потеря полуволны произойдет в точке О и вышеупомянутый член будет иметь знак минус; если же n < n0, то потеря полуволны произойдет в точке С и l0/2 будет иметь знак плюс. Согласно рис. 249, ОС= СВ=d/cos г, ОА = OBsin I = 2d tgr sini.Учитывая для данного случая закон преломления sini =nsin r, получим

С учетом потери полуволны для оптической разности хода получим

и минимум, если (см. (172.3))

(174.3)

Интерференция, как известно, наблюдается, только если удвоенная толщина пластинки меньше длины когерентности падающей волны.

1. Полосы равного наклона (интерференция от плоскопараллельной пластины).Из выражений (174.2) и (174.3) следует, что интерференционная картина в плоскопараллельных пластинках (пленках) определяется величинамиl0, d, n и i. Для данных l0, d и nкаждому наклону iлучей соответствует своя интерференционная полоса. Интерференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона.

Лучи 1¢ и 1², отразившиеся от верхней и нижней граней пластинки (рис. 250), параллельны друг другу, так как пластинка плоскопараллельна.

Рис. 250

Следовательно, интерферирующие лучи 1¢ и 1²«пересекаются» только в бесконечности, поэтому говорят, чтополосы равного наклона локализованы в бесконечности. Для их наблюдения используют собирающую линзу и экран (Э), расположенный в фокальной плоскости линзы. Параллельные лучи 1¢ и 1²соберутся в фокусе F линзы (на рис. 250 ее оптическая ось параллельна лучам 1¢ и 1²), в эту же точку придут и другие лучи (на рис. 250 - луч 2), параллельные лучу 1, в результате чего увеличивается общая интенсивность. Лучи 3, наклоненные под другим углом, соберутся в другой точке Р фокальной плоскости линзы. Легко показать, что если оптическая ось линзы перпендикулярна поверхности пластинки, то полосы равного наклона будут иметь вид концентрических колец с цент ром в фокусе линзы.

2. Полосы равной толщины (интерференция от пластинки переменной толщины). Пусть на клин (угол aмежду боковыми гранями мал) падает плоская волна, направление распространения которой совпадает с параллельными лучами 1 и 2 (рис. 251). Из всех лучей, на которые разделяется падающий луч 1, рассмотрим лучи 1¢ и 1², отразившиеся от верхней и нижней поверхностей клина. При определенном взаимном положении клина и линзы лучи 1' и 1" пересекутся в некоторой точке А, являющейся изображением точки В. Так как лучи 1¢ и 1²когерентны, они будут интерферировать. Если источник расположен довольно далеко от поверхности клина и угол, а ничтожно мал, то оптическая разность хода между интерферирующими лучами 1' и 1" может быть с достаточной степенью точности вычислена по формуле (174.1), где d - толщина клина в месте падения на него луча. Лучи 2' и 2", образовавшиеся при делении
луча 2, падающего в другую точку клина, собираются линзой в точке А'. Оптическая разность хода уже определяется толщиной d'. Таким образом, на экране возникает система интерференционных полос. Каждая из полос возникает при отражении от мест пластинки, имеющих одинаковую толщину (в общем случае толщина пластинки может изменяться произвольно). Интерференционные полосы, возникающие в результате интерференции от мест одинаковой толщины, называются полосами равной толщины.

Рис. 251

Так как верхняя и нижняя грани клина не параллельны между собой, то лучи 1¢ и 1² (2' и 2") пересекаются вблизи пластинки, в изображенном на рис. 251 случае - над ней (при другой конфигурации клина они могут пересекаться и под пластинкой). Таким образом, полосы равной толщины локализованы вблизи поверхности клина. Бели свет падает на пластинку нормально, то полосы равной толщины локализуются на верхней поверхности клина.

 




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.