Интерференцию света можно объяснить, рассматривая интерференцию волн .Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Этому условию удовлетворяют монохроматические волны — неограниченные в пространстве волны одной определенной и строго постоянной частоты. Taк как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны. Поэтому на опыте не наблюдается интерференция света от независимых источников, например от двух электрических лампочек.
Прерывистое излучение света атомами в виде отдельных коротких импульсов называется волновым цугом.
Описанная модель испускания света справедлива и для любого макроскопического источника, так как атомы светящегося тела излучают свет также независимо друг от друга. Это означает, что начальные фазы соответствующих им волновых цугов не связаны между собой. Помимо этого, даже для одного и того же атома начальные фазы разных цугов отличаются для двух последующих актов излучения. Следовательно, свет, испускаемый макроскопическим источником, некогерентен.
Любой немонохроматический свет можно представить в виде совокупности сменяющих друг друга независимых гармонических цугов. Средняя продолжительность одного цуга tког называется временем когерентности. Когерентность существует только в пределах одного цуга, и время когерентности не может превышать время излучения, т. е. tког < t. Прибор обнаружит четкую интерференционную картину лишь тогда, когда время разрешения прибора значительно меньше времени когерентности накладываемых световых волн.
Если волна распространяется в однородной среде, то фаза колебаний в определенной точке пространства сохраняется только в течение времени когерентности tког. За это время волна распространяется в вакууме на расстояние lког =сtког, называемое длиной когерентности (или длиной цуга). Таким образом, длина когерентности есть расстояние, при прохождении которого две или несколько волн утрачивают когерентность. Отсюда следует, что наблюдение интерференции света возможно лишь при оптических разностях хода, меньших длины когерентности для используемого источника света.
Чем ближе волна к монохроматической, тем меньше ширина Dw спектра ее частот и, как можно показать, больше ее время когерентности tког, а следовательно, и длина когерентности lког. Когерентность колебаний, которые совершаются в одной и той же точке пространства, определяемая степенью монохроматичности волн, называется временнóй когерентностью.
Две монохроматические световые волны, накладываясь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х1=А1 cos(w t + j1) и x2 = A2 cos(w t + j2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях. Напряженности электрического и магнитного полей подчиняются принципу суперпозиции.Амплитуда результирующего колебания в данной точке ). Так как волны когерентны, то cos(j2 — j1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (I ~ А2)
В точках пространства, где cos(j2—j1)>0, интенсивность I>I1+I2, где cos(j2—j1)<0, интенсивность I<I1+I2. Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Это явление называется интерференцией света.
Для некогерентных волн разность j2—j1 непрерывно изменяется, поэтому среднее во времени значение cos(j2—j1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I1=I2 равна 2I1 (для когерентных волн при данном условии в максимумах I=4I1, в минимумах I=0).
Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференционная картина.
Пусть разделение на две когерентные волны происходит в определенной точке О. До точки M, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления п1 прошла путь s1, вторая — в среде с показателем преломления n2 — путь s2. Если в точке О фаза колебаний равна wt, то в точке М первая волна возбудит колебание A1cos(t–s1/v1), вторая волна — колебание A2cos(t–s2/v2), где v1=c/n1, v2=c/n2 — соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна
(учли, что w /с = 2pn/с = 2p/l0, где l0 — длина волны в вакууме). Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, a D = L2 – L1 — разность оптических длин проходимых волнами путей — называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме
(172.2)
то d = ±2тp, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума.
Если оптическая разность хода
(172.3)
то d = ±2(т+1)p, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума.