Помощничек
Главная | Обратная связь


Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Виды минеральных примесей



По происхождению различают три вида минеральных примесей.

Первичные примеси в составе материнского вещества перешли в топливо из углеобразователей. Эти примеси связаны с органической массой топлива. По количеству их обычно немного, они равномерно распределены по всей массе топлива и не могут быть удалены из него.

Некоторое количество примесей внесено в топливо в процессе углеобразования как наносы ветром и водой. Эти примеси, называемые вторичными, распределены в топливе менее равномерно, иногда встречаются в виде тонких прослоек. Первичные и вторичные минеральные примеси являются внутренними примесями топлива.

Третичные примеси попадают в топливо в виде породы при его добыче от внешнего минерального окружения вырабатываемого пласта и распределены в топливе неравномерно, сравнительно легко отделяются и являются внешними примесями.

Твердый негорючий остаток, получающийся после завершения преобразований в минеральной части топлива в процессе его горения, называют золой. Выход газифицирующейся части примесей уменьшает массу золы по отношению к исходным минеральным примесям топлива, а некоторые реакции, например, окисление железного колчедана, приводят к его увеличению. Обычно масса золы не намного меньше массы минеральных примесей в топливе, лишь в горючих сланцах, вследствие разложения содержащихся в них карбонатов, масса золы получается значительно меньше по сравнению с массой минеральных примесей.

В топочной камере при высоких температурах часть золы расплавляется, образуя раствор минералов, который называется шлаком. Из топки шлаки удаляются в жидком или гранулированном состоянии.

По характеристикам плавкости золы энергетические угли подразделяются на три группы: с легкоплавкой золой t3 = 1350оС, с золой средней плавкости t3 = 1350-1450оС и с тугоплавкой золой t3> 1450оС.

Влагу топлива подразделяют на две части: внешнюю и внутреннюю.

При добыче топлива, транспортировке и хранении в него попадают подземные и грунтовые воды, влага из атмосферного воздуха, вызывая поверхностное увлажнение кусков топлива. С уменьшением размера кусков удельная поверхность топлива увеличивается и увеличивается количество удерживаемой ею внешней влаги. К внешней также относится капиллярная влага, т.е. влага, заполняющая капилляры и поры, сильно развитые в торфе и бурых углях. Внешняя влага может быть удалена механическими средствами и тепловой сушкой.

К внутреннейотносят коллоидную и гидратную влагу. Коллоидная влага является составной частью топлива. В его массе она распределяется очень равномерно. Количество коллоидной влаги зависит от химической природы и состава топлива, и содержания влаги в атмосферном воздухе. По мере увеличения степени углефикации топлива содержание коллоидной влаги падает. Много коллоидной влаги в торфе, меньше в бурых углях и мало в каменных углях. Гидратная, или кристаллизационная влага химически связана с минеральными примесями топлива, главным образом сернокислыми кальцием и алюмосиликатом. Гидратной влаги в топливе содержится мало, она становится заметной в многозольных топливах. При подсушке испаряется часть коллоидной влаги, но практически не изменяется содержание гидратной влаги. Последняя может быть удалена лишь при высоких температурах.

Твердое натуральное топливо при пребывании на воздухе теряет, а подсушенное - приобретает влагу до тех пор, пока давление насыщенного пара влаги топлива не уравновесится с парциальным давлением влаги воздуха, т.е. с его относительной влажностью. Твердое топливо с установившейся в естественных условиях влажностью называют воздушно-сухим топливом.

Важной технической характеристикой является гигроскопическая влажность топлива, получаемая при подсушке до равновесного состояния в воздушной среде при точно выраженных условиях: температура 20±1оС и относительной влажности 65±5% (ГОСТ 8719-78). С повышением степени углефикации топлива гигроскопическая влага уменьшается.

Влажность рабочей массы различных топлив колеблется в широких пределах. Для определения влажности топлива готовят лабораторную пробу измельчением топлива до кусочков размером 3мм и меньше. Пользуются и аналитической пробой, подготовленной из лабораторной пробы измельчением ее частиц до размеров меньше 100мкм и подсушкой до воздушно-сухого состояния.

Влажность рабочего топлива определяют сушкой лабораторной пробы топлива при температуре около 105оС до достижения постоянной массы. Аналитическую влагу определяют тем же методом сушки аналитической пробы топлива.

Повышенная влажность приводит к снижению теплоты сгорания топлива и увеличению его расхода, к увеличению объема продуктов сгорания топлива, а следовательно, потерь тепла с уходящими газами и затрат на удаление их из парогенератора. Кроме того, высокая влажность способствует выветриванию и самовозгоранию твердого топлива при его хранении. С повышением влажности ухудшается сыпучесть твердых топлив. В зимнее время высокая влажность может вызвать смерзание топлива, которое нарушает нормальную работу устройств топливоподачи, являясь причиной резкого уменьшения подачи топлива.




Поиск по сайту:

©2015-2020 studopedya.ru Все права принадлежат авторам размещенных материалов.